Infrared Camera for Brain Mapping During Surgery

NCT ID: NCT00001554

Last Updated: 2008-03-04

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

PHASE1

Total Enrollment

80 participants

Study Classification

INTERVENTIONAL

Study Start Date

1996-06-30

Study Completion Date

2000-06-30

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

It is extremely important to identify and distinguish healthy brain tissue from diseased brain tissue during neurosurgery. If normal tissue is damaged during neurosurgery it can result in long term neurological problems for the patient.

The brain tissue as it appears prior to the operation on CT scan and MRI is occasionally very different from how it appears during the actual operation. Therefore, it is necessary to develop diagnostic procedures that can be used during the operation

Presently, the techniques used for intraoperative mapping of the brain are not reliable in all cases in which they are used. Researchers in this study have developed a new approach that may allow diseased brain tissue to be located during an operation with little risk. This new approach uses nfrared technology to locate the diseased tissue and identify healthy brain tissue.

The goal of this study is to investigate the clinical use of intraoperative infrared (IR) neuroimaging to locate diseased tissue and distinguish it from normal functioning tissue during the operation.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

It is important during neurosurgical procedures to identify and preserve eloquent functional cortex adjacent to a resectable lesion. Resection of a lesion infiltrating vital cerebral cortex can be associated with postoperative neurological deficits if the surgeon cannot clearly distinguish between the infiltrating borders of a lesion and surrounding functionally eloquent tissue. Spatial relationships between a lesion and surrounding normal brain can change significantly from those determined by preoperative methods such as CT and MRI scans. Necessary intraoperative interventions such as cerebrospinal fluid drainage, osmotic diuresis and lesion debulking cause quantitatively unpredictable brain shift in three dimensions. Therefore functional localization in real time that can be performed in the operating room is desirable. However, intraoperative real-time functional mapping techniques now available cannot be used in many surgical situations and are not sufficiently reliable in all cases in which they are used.

We have developed an intraoperative approach that may permit reliable lesion localization and brain functional mapping in real time with minimal risk. This approach makes use of infrared technology to identify functionally active eloquent cortex and may differentiate abnormal tissue from normal cortex.

The goal of this study is to investigate the clinical use of intraoperative infrared (IR) neuroimaging to differentiate intracranial lesions from surrounding normal functionally important tissue in real time. Reliable real-time intraoperative functional mapping of eloquent cortex adjacent to lesions by this technique would improve the safety and effectiveness of many neurosurgical procedures.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Epilepsy Neurologic Manifestations

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Primary Study Purpose

TREATMENT

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

intraoperative infrared (IR) neuroimaging

Intervention Type DEVICE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

Adult patients who will be undergoing craniotomy for lesions such as tumor, epileptic focus, vascular malformation or infection.

Adult patients who are able to provide informed consent.
Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

National Institute of Neurological Disorders and Stroke (NINDS)

NIH

Sponsor Role lead

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

National Institute of Neurological Disorders and Stroke (NINDS)

Bethesda, Maryland, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

References

Explore related publications, articles, or registry entries linked to this study.

Brugge JF, Poon PW, So AT, Wu BM, Chan FH, Lam FK. Thermal images of somatic sensory cortex obtained through the skull of rat and gerbil. Exp Brain Res. 1995;106(1):7-18. doi: 10.1007/BF00241352.

Reference Type BACKGROUND
PMID: 8542979 (View on PubMed)

George JS, Lewine JD, Goggin AS, Dyer RB, Flynn ER. IR thermal imaging of a monkey's head: local temperature changes in response to somatosensory stimulation. Adv Exp Med Biol. 1993;333:125-36. doi: 10.1007/978-1-4899-2468-1_12. No abstract available.

Reference Type BACKGROUND
PMID: 8362657 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

96-N-0093

Identifier Type: -

Identifier Source: secondary_id

960093

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.