Prediction and Intervention Effect of Rehabilitation Status for Severe Mental Disorder Patients Based on Multimodal Analysis and AI Agents

NCT ID: NCT06904079

Last Updated: 2025-08-17

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

RECRUITING

Clinical Phase

NA

Total Enrollment

82 participants

Study Classification

INTERVENTIONAL

Study Start Date

2024-03-12

Study Completion Date

2026-06-30

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Mental health issues represent a major public health and social problem that significantly impacts economic and social development. Compared to other diseases, mental disorders can impair various aspects of a patient' s life, including psychological, social, occupational, and educational functions, affecting their quality of life and daily living abilities. Particularly, severe mental disorders tend to have a chronic course, often resulting in diminished social functions and social withdrawal, making it difficult for patients to integrate into society. Repeated, systematic, and comprehensive rehabilitation training for patients with severe mental disorders can effectively control or delay disease recurrence, improve social functions, enhance quality of life, and facilitate patients' reintegration into society.

In recent years, the scope of mental disorder rehabilitation has expanded to include enhancing patients' social functions and promoting their integration into society. Vocational rehabilitation and social skills training are widely used in the rehabilitation treatment of patients with severe mental disorders, and some physical intervention methods, such as neurofeedback training, have also proven to be significantly effective in the rehabilitation process. However, traditional rehabilitation techniques often lack specificity and fail to meet individualized needs of patients. Additionally, the rehabilitation process lacks long-term monitoring, making it challenging to continuously assess and adjust patients' rehabilitation outcomes. Furthermore, the assessment of rehabilitation effectiveness mainly relies on patients' subjective feelings and clinical observations, lacking high-quality evidence. Therefore, there is an urgent need to introduce new rehabilitation technologies and scientifically evaluate their effectiveness to address the shortcomings of traditional methods and provide more personalized, precise, and effective rehabilitation support.

With the rise of digital health technologies, the field of mental health rehabilitation has encountered new opportunities. Compared to traditional therapies, digital health is revolutionizing the healthcare industry, moving away from traditional approaches to healthcare management to real-time personalized monitoring and therapeutic care.Technologies such as remote monitoring, virtual reality, and computer-assisted cognitive correction therapy are increasingly applied in rehabilitation. However, these methods still need improvements in data management and integration capabilities. A large amount of data accumulates in systems, recording only the training process and real-time effects of patients, without further evaluating their rehabilitation status, leading to resource waste. Therefore, there is an urgent need to develop a digital rehabilitation model that better meets the genuine needs of patients with severe mental disorders.

This study aims to integrate multimodal technology, reinforcement learning, and agent-based modeling (ABM) into the research of mental health rehabilitation to more accurately assess and predict the rehabilitation status of mental disorder patients and to more effectively guide and support decision-making in mental rehabilitation treatment.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

This study aims to integrate multimodal technology, reinforcement learning(RL), and agent-based modeling (ABM) into the research of mental health rehabilitation to more accurately assess and predict the rehabilitation status of mental disorder patients and to more effectively guide and support decision-making in mental rehabilitation treatment.

This research project is divided into three main phases: theoretical and experimental phase, multimodal analysis phase, and application and optimization phase.

Firstly, we will conduct in-depth research across 20 community mental health facilities in Shanghai. This will be combined with an analysis of existing literature and studies to understand the needs of potential users, providing theoretical support and design basis for subsequent gamification interventions. This phase of user feedback, literature review, and needs assessment will offer directional guidance for the entire research.

In the second phase, based on the user needs and literature analysis results from the previous phase, we will design and implement gamification interventions, followed by a randomized controlled trial. Simultaneously, we will collect and analyze game behavior data to systematically evaluate the actual effects of the gamification interventions. This phase, focusing on intervention design and effect evaluation, is the core part of the research, and user feedback will continuously guide us in optimizing the interventions.

In the third phase, using the Multimodal and Crossmodal AI framework(MMCRAI), we will analyze multimodal data including patients' game behavior, physiological indicators, and psychological health information to better understand the key factors and dynamic changes in the rehabilitation process. This will provide training signals for the subsequent modeling and optimization phase.

Finally, combining agent-based models and reinforcement learning algorithms, we will simulate and predict the effects of gamification interventions in actual community settings, thus translating theoretical and experimental results into practical guidelines. In this phase, we will validate the effectiveness of the agent-based model through real-world application scenarios and discuss potential limitations and assumptions.

Overall, these four phases are interrelated and logically coherent, progressively deepening our understanding of the mental health rehabilitation process and forming a complete research framework, thereby laying a solid foundation for practical applications. Throughout the study, we will uphold ethical principles and privacy policies, ensuring that all research activities comply with regulations.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Severe Mental Disorder Schizophrenia Schizoaffective Disorder Paranoid Psychosis Bipolar Affective Disorder Mental Disorders Due to Epilepsy Mental Retardation Accompanied by Mental Disorders

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

OTHER

Blinding Strategy

NONE

This randomized trial is an open trial, and the interventions involved cannot be blinded, so the trial is open to participants, observers, and outcome evaluators.

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Intervention Group (Gamified Digital Rehabilitation)

Participants in this arm will receive routine pharmacological treatment and standard community rehabilitation services, combined with a structured, story-based gamified digital rehabilitation intervention. The interventions are digital functional games five times a week (30 minutes each) for 3 months.

Group Type EXPERIMENTAL

Gamified Digital Rehabilitation

Intervention Type OTHER

The gamification intervention measures are as follows: Currently, the initial version of the community mental health rehabilitation interactive game mainly focuses on six dimensions of medication management, including the importance of taking medication, identifying and dealing with adverse reactions to antipsychotic drugs, learning self-management of medication, assessing the effectiveness of medication treatment, long-term management of medication treatment, and discussing issues related to medication effects with medical staff. Next, we will continue to design a series of games themed on symptom management and psychological rehabilitation, and implement game-based digital rehabilitation interventions for patients in the intervention group based on these games.

Routine Care

Intervention Type BEHAVIORAL

Receive regular psychiatric medication treatment and regular community rehabilitation services, including regular follow-ups, rehabilitation guidance, and community education,etc.

Control Group (Routine Care)

Participants in this arm will receive routine pharmacological treatment and standard community rehabilitation services during the same period.

Group Type ACTIVE_COMPARATOR

Routine Care

Intervention Type BEHAVIORAL

Receive regular psychiatric medication treatment and regular community rehabilitation services, including regular follow-ups, rehabilitation guidance, and community education,etc.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Gamified Digital Rehabilitation

The gamification intervention measures are as follows: Currently, the initial version of the community mental health rehabilitation interactive game mainly focuses on six dimensions of medication management, including the importance of taking medication, identifying and dealing with adverse reactions to antipsychotic drugs, learning self-management of medication, assessing the effectiveness of medication treatment, long-term management of medication treatment, and discussing issues related to medication effects with medical staff. Next, we will continue to design a series of games themed on symptom management and psychological rehabilitation, and implement game-based digital rehabilitation interventions for patients in the intervention group based on these games.

Intervention Type OTHER

Routine Care

Receive regular psychiatric medication treatment and regular community rehabilitation services, including regular follow-ups, rehabilitation guidance, and community education,etc.

Intervention Type BEHAVIORAL

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Registered in the Shanghai Mental Health Information Management System,

* Diagnosed patients with one of the six severe mental disorders: schizophrenia, schizoaffective disorder, paranoid psychosis, bipolar (affective) disorder, mental disorder due to epilepsy, and mental retardation accompanied by mental disorder,

* Aged between 18 and 65 years old, ④ Normal vision or hearing, or within the normal range after correction, ⑤ Patients or their families have provided informed consent for this study and signed the informed consent form.

Exclusion Criteria

Patients with severe physical illnesses or organic brain diseases.
Minimum Eligible Age

18 Years

Maximum Eligible Age

65 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Shanghai Jiao Tong University School of Medicine

OTHER

Sponsor Role collaborator

Shanghai Mental Health Center

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Jun Cai

Role: PRINCIPAL_INVESTIGATOR

Shanghai Mental Health Center

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Shanghai Mental Health Center

Shanghai, , China

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

China

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Weibo Zhang

Role: CONTACT

86-13764694223

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Jun Cai

Role: primary

86-18017311058

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

Jun Cai

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Cognitive Rehabilitation Therapy for COVID-19
NCT06086379 ENROLLING_BY_INVITATION NA