Novel Neuroradiological Workflow for the Assisted DIAgnosis and Management of DEMentia with Artificial Intelligence

NCT ID: NCT06877182

Last Updated: 2025-03-19

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

ACTIVE_NOT_RECRUITING

Total Enrollment

80000 participants

Study Classification

OBSERVATIONAL

Study Start Date

2024-08-30

Study Completion Date

2027-08-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Identifying, screening and monitoring individuals at risk of Alzheimer's disease (AD) and dementia is a formidable challenge. Neuroimaging, and in particular magnetic resonance imaging (MRI), is crucial to detect structural neurodegeneration. However, current quantification tools are mainly limited to research contexts and produce non-standardised results. DIADEMA will build a systematic and standardised workflow to support neuro(radio)logical diagnosis. By combining artificial intelligence (AI) and machine learning (ML) the investigators will significantly enhance the clinical diagnosis of AD in neuroradiology. The investigator's main hypothesis is that an efficient workflow and associated higher diagnostic accuracy will substantially reduce healthcare costs, support clinical decision-making, provide second-opinion tools and improve patient care. This dual advance will have a profound impact on the healthcare system, marking an important step in the fight against Alzheimer's disease and dementia.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Alzheimer Disease Dementia

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

RETROSPECTIVE

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Magnetic Resonance Imaging with Contrast

To evaluate the possibility to improve the neuroradiologic workflow with AI models

Intervention Type DIAGNOSTIC_TEST

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* patients who perform brain magnetic resonance during the last 20 years

Exclusion Criteria

\-
Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

UNINA

UNKNOWN

Sponsor Role collaborator

UNITO

UNKNOWN

Sponsor Role collaborator

Ospedale Fate bene Fratelli di Brescia

UNKNOWN

Sponsor Role collaborator

IRCCS SYNLAB SDN

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Marco Aiello

Role: PRINCIPAL_INVESTIGATOR

IRCCS SYNLAB SDN

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Irccs Synlab Sdn

Naples, , Italy

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Italy

References

Explore related publications, articles, or registry entries linked to this study.

Filip AC, Azevedo T, Passamonti L, Toschi N, Lio P. A novel Graph Attention Network Architecture for modeling multimodal brain connectivity. Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1071-1074. doi: 10.1109/EMBC44109.2020.9176613.

Reference Type BACKGROUND
PMID: 33018171 (View on PubMed)

Spasov SE, Passamonti L, Duggento A, Lio P, Toschi N. A Multi-modal Convolutional Neural Network Framework for the Prediction of Alzheimer's Disease. Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:1271-1274. doi: 10.1109/EMBC.2018.8512468.

Reference Type BACKGROUND
PMID: 30440622 (View on PubMed)

Spasov S, Passamonti L, Duggento A, Lio P, Toschi N; Alzheimer's Disease Neuroimaging Initiative. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease. Neuroimage. 2019 Apr 1;189:276-287. doi: 10.1016/j.neuroimage.2019.01.031. Epub 2019 Jan 14.

Reference Type BACKGROUND
PMID: 30654174 (View on PubMed)

Esteban O, Birman D, Schaer M, Koyejo OO, Poldrack RA, Gorgolewski KJ. MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites. PLoS One. 2017 Sep 25;12(9):e0184661. doi: 10.1371/journal.pone.0184661. eCollection 2017.

Reference Type BACKGROUND
PMID: 28945803 (View on PubMed)

van Leeuwen KG, Schalekamp S, Rutten MJCM, van Ginneken B, de Rooij M. Artificial intelligence in radiology: 100 commercially available products and their scientific evidence. Eur Radiol. 2021 Jun;31(6):3797-3804. doi: 10.1007/s00330-021-07892-z. Epub 2021 Apr 15.

Reference Type BACKGROUND
PMID: 33856519 (View on PubMed)

Archetti D, Young AL, Oxtoby NP, Ferreira D, Martensson G, Westman E, Alexander DC, Frisoni GB, Redolfi A; for Alzheimer's Disease Neuroimaging Initiative and EuroPOND Consortium. Inter-Cohort Validation of SuStaIn Model for Alzheimer's Disease. Front Big Data. 2021 May 20;4:661110. doi: 10.3389/fdata.2021.661110. eCollection 2021.

Reference Type BACKGROUND
PMID: 34095821 (View on PubMed)

Redolfi A, De Francesco S, Palesi F, Galluzzi S, Muscio C, Castellazzi G, Tiraboschi P, Savini G, Nigri A, Bottini G, Bruzzone MG, Ramusino MC, Ferraro S, Gandini Wheeler-Kingshott CAM, Tagliavini F, Frisoni GB, Ryvlin P, Demonet JF, Kherif F, Cappa SF, D'Angelo E. Medical Informatics Platform (MIP): A Pilot Study Across Clinical Italian Cohorts. Front Neurol. 2020 Sep 23;11:1021. doi: 10.3389/fneur.2020.01021. eCollection 2020.

Reference Type BACKGROUND
PMID: 33071930 (View on PubMed)

Ribaldi F, Altomare D, Jovicich J, Ferrari C, Picco A, Pizzini FB, Soricelli A, Mega A, Ferretti A, Drevelegas A, Bosch B, Muller BW, Marra C, Cavaliere C, Bartres-Faz D, Nobili F, Alessandrini F, Barkhof F, Gros-Dagnac H, Ranjeva JP, Wiltfang J, Kuijer J, Sein J, Hoffmann KT, Roccatagliata L, Parnetti L, Tsolaki M, Constantinidis M, Aiello M, Salvatore M, Montalti M, Caulo M, Didic M, Bargallo N, Blin O, Rossini PM, Schonknecht P, Floridi P, Payoux P, Visser PJ, Bordet R, Lopes R, Tarducci R, Bombois S, Hensch T, Fiedler U, Richardson JC, Frisoni GB, Marizzoni M. Accuracy and reproducibility of automated white matter hyperintensities segmentation with lesion segmentation tool: A European multi-site 3T study. Magn Reson Imaging. 2021 Feb;76:108-115. doi: 10.1016/j.mri.2020.11.008. Epub 2020 Nov 19.

Reference Type BACKGROUND
PMID: 33220450 (View on PubMed)

Morid MA, Borjali A, Del Fiol G. A scoping review of transfer learning research on medical image analysis using ImageNet. Comput Biol Med. 2021 Jan;128:104115. doi: 10.1016/j.compbiomed.2020.104115. Epub 2020 Nov 13.

Reference Type BACKGROUND
PMID: 33227578 (View on PubMed)

Bao S, Boyd BD, Kanakaraj P, Ramadass K, Meyer FAC, Liu Y, Duett WE, Huo Y, Lyu I, Zald DH, Smith SA, Rogers BP, Landman BA. Integrating the BIDS Neuroimaging Data Format and Workflow Optimization for Large-Scale Medical Image Analysis. J Digit Imaging. 2022 Dec;35(6):1576-1589. doi: 10.1007/s10278-022-00679-8. Epub 2022 Aug 3.

Reference Type BACKGROUND
PMID: 35922700 (View on PubMed)

Rajput D, Wang WJ, Chen CC. Evaluation of a decided sample size in machine learning applications. BMC Bioinformatics. 2023 Feb 14;24(1):48. doi: 10.1186/s12859-023-05156-9.

Reference Type BACKGROUND
PMID: 36788550 (View on PubMed)

McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011 May;7(3):263-9. doi: 10.1016/j.jalz.2011.03.005. Epub 2011 Apr 21.

Reference Type BACKGROUND
PMID: 21514250 (View on PubMed)

Boccardi M, Altomare D, Ferrari C, Festari C, Guerra UP, Paghera B, Pizzocaro C, Lussignoli G, Geroldi C, Zanetti O, Cotelli MS, Turla M, Borroni B, Rozzini L, Mirabile D, Defanti C, Gennuso M, Prelle A, Gentile S, Morandi A, Vollaro S, Volta GD, Bianchetti A, Conti MZ, Cappuccio M, Carbone P, Bellandi D, Abruzzi L, Bettoni L, Villani D, Raimondi MC, Lanari A, Ciccone A, Facchi E, Di Fazio I, Rozzini R, Boffelli S, Manzoni L, Salvi GP, Cavaliere S, Belotti G, Avanzi S, Pasqualetti P, Muscio C, Padovani A, Frisoni GB; Incremental Diagnostic Value of Amyloid PET With [18F]-Florbetapir (INDIA-FBP) Working Group. Assessment of the Incremental Diagnostic Value of Florbetapir F 18 Imaging in Patients With Cognitive Impairment: The Incremental Diagnostic Value of Amyloid PET With [18F]-Florbetapir (INDIA-FBP) Study. JAMA Neurol. 2016 Dec 1;73(12):1417-1424. doi: 10.1001/jamaneurol.2016.3751.

Reference Type BACKGROUND
PMID: 27802513 (View on PubMed)

Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB, Hampel H, Jagust WJ, Johnson KA, Knopman DS, Petersen RC, Scheltens P, Sperling RA, Dubois B. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016 Aug 2;87(5):539-47. doi: 10.1212/WNL.0000000000002923. Epub 2016 Jul 1.

Reference Type BACKGROUND
PMID: 27371494 (View on PubMed)

Teipel S, Grothe MJ; Alzheimer's Disease Neuroimaging Initiative. MRI-based basal forebrain atrophy and volumetric signatures associated with limbic TDP-43 compared to Alzheimer's disease pathology. Neurobiol Dis. 2023 May;180:106070. doi: 10.1016/j.nbd.2023.106070. Epub 2023 Mar 8.

Reference Type BACKGROUND
PMID: 36898615 (View on PubMed)

De Francesco S, Galluzzi S, Vanacore N, Festari C, Rossini PM, Cappa SF, Frisoni GB, Redolfi A. Norms for Automatic Estimation of Hippocampal Atrophy and a Step Forward for Applicability to the Italian Population. Front Neurosci. 2021 Jun 28;15:656808. doi: 10.3389/fnins.2021.656808. eCollection 2021.

Reference Type BACKGROUND
PMID: 34262425 (View on PubMed)

Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018 Aug;18(8):500-510. doi: 10.1038/s41568-018-0016-5.

Reference Type BACKGROUND
PMID: 29777175 (View on PubMed)

Qiu S, Miller MI, Joshi PS, Lee JC, Xue C, Ni Y, Wang Y, De Anda-Duran I, Hwang PH, Cramer JA, Dwyer BC, Hao H, Kaku MC, Kedar S, Lee PH, Mian AZ, Murman DL, O'Shea S, Paul AB, Saint-Hilaire MH, Alton Sartor E, Saxena AR, Shih LC, Small JE, Smith MJ, Swaminathan A, Takahashi CE, Taraschenko O, You H, Yuan J, Zhou Y, Zhu S, Alosco ML, Mez J, Stein TD, Poston KL, Au R, Kolachalama VB. Multimodal deep learning for Alzheimer's disease dementia assessment. Nat Commun. 2022 Jun 20;13(1):3404. doi: 10.1038/s41467-022-31037-5.

Reference Type BACKGROUND
PMID: 35725739 (View on PubMed)

Faggioni L, Coppola F, Ferrari R, Neri E, Regge D. Usage of structured reporting in radiological practice: results from an Italian online survey. Eur Radiol. 2017 May;27(5):1934-1943. doi: 10.1007/s00330-016-4553-6. Epub 2016 Aug 29.

Reference Type BACKGROUND
PMID: 27572812 (View on PubMed)

Bosco P, Redolfi A, Bocchetta M, Ferrari C, Mega A, Galluzzi S, Austin M, Chincarini A, Collins DL, Duchesne S, Marechal B, Roche A, Sensi F, Wolz R, Alegret M, Assal F, Balasa M, Bastin C, Bougea A, Emek-Savas DD, Engelborghs S, Grimmer T, Grosu G, Kramberger MG, Lawlor B, Mandic Stojmenovic G, Marinescu M, Mecocci P, Molinuevo JL, Morais R, Niemantsverdriet E, Nobili F, Ntovas K, O'Dwyer S, Paraskevas GP, Pelini L, Picco A, Salmon E, Santana I, Sotolongo-Grau O, Spiru L, Stefanova E, Popovic KS, Tsolaki M, Yener GG, Zekry D, Frisoni GB. The impact of automated hippocampal volumetry on diagnostic confidence in patients with suspected Alzheimer's disease: A European Alzheimer's Disease Consortium study. Alzheimers Dement. 2017 Sep;13(9):1013-1023. doi: 10.1016/j.jalz.2017.01.019. Epub 2017 Mar 3.

Reference Type BACKGROUND
PMID: 28263741 (View on PubMed)

Buchlak QD, Milne MR, Seah J, Johnson A, Samarasinghe G, Hachey B, Esmaili N, Tran A, Leveque JC, Farrokhi F, Goldschlager T, Edelstein S, Brotchie P. Charting the potential of brain computed tomography deep learning systems. J Clin Neurosci. 2022 May;99:217-223. doi: 10.1016/j.jocn.2022.03.014. Epub 2022 Mar 12.

Reference Type BACKGROUND
PMID: 35290937 (View on PubMed)

Redolfi A, Archetti D, De Francesco S, Crema C, Tagliavini F, Lodi R, Ghidoni R, Gandini Wheeler-Kingshott CAM, Alexander DC, D'Angelo E. Italian, European, and international neuroinformatics efforts: An overview. Eur J Neurosci. 2023 Jun;57(12):2017-2039. doi: 10.1111/ejn.15854. Epub 2022 Dec 14.

Reference Type BACKGROUND
PMID: 36310103 (View on PubMed)

Kwee TC, Kwee RM. Workload of diagnostic radiologists in the foreseeable future based on recent scientific advances: growth expectations and role of artificial intelligence. Insights Imaging. 2021 Jun 29;12(1):88. doi: 10.1186/s13244-021-01031-4.

Reference Type BACKGROUND
PMID: 34185175 (View on PubMed)

Aiello M, Cavaliere C, D'Albore A, Salvatore M. The Challenges of Diagnostic Imaging in the Era of Big Data. J Clin Med. 2019 Mar 6;8(3):316. doi: 10.3390/jcm8030316.

Reference Type BACKGROUND
PMID: 30845692 (View on PubMed)

Aiello M, Esposito G, Pagliari G, Borrelli P, Brancato V, Salvatore M. How does DICOM support big data management? Investigating its use in medical imaging community. Insights Imaging. 2021 Nov 8;12(1):164. doi: 10.1186/s13244-021-01081-8.

Reference Type BACKGROUND
PMID: 34748101 (View on PubMed)

Jonsson L, Tate A, Frisell O, Wimo A. The Costs of Dementia in Europe: An Updated Review and Meta-analysis. Pharmacoeconomics. 2023 Jan;41(1):59-75. doi: 10.1007/s40273-022-01212-z. Epub 2022 Nov 15.

Reference Type BACKGROUND
PMID: 36376775 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

1/24

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Novel Dementia Biomarkers
NCT04427436 UNKNOWN