Building of Prognosis Model for Patients With Cirrhosis Based on Sarcopenia Assessed by Deep Learning

NCT ID: NCT06531200

Last Updated: 2024-08-06

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

NOT_YET_RECRUITING

Total Enrollment

1000 participants

Study Classification

OBSERVATIONAL

Study Start Date

2024-09-01

Study Completion Date

2025-12-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The goal of this observational study is to develop and validate a fully automated imaging deep learning platform for the evaluation of sarcopenia in liver cirrhosis. Based on this model, a new prognostic model for liver cirrhosis incorporating imaging biomarkers such as sarcopenia will be constructed, and its predictive performance will be validated.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

The goal of this observational study is to collect clinical and abdominal imaging data of patients with liver cirrhosis. The collected imaging data will be used as a model development set to develop, test, and internally validate a fully automated imaging deep learning platform for the evaluation of sarcopenia in liver cirrhosis. Subsequently, relevant data from patients with liver cirrhosis at other centers will be collected and used as an external validation dataset. The model will be externally validated by abdominal radiology experts. Furthermore, we will include sociodemographic information, clinical data, imaging data, and clinical outcomes of the aforementioned liver cirrhosis patients to predict the prognosis of these patients using the established model. This model will be used to construct a new prognostic model for liver cirrhosis incorporating imaging biomarkers such as sarcopenia, and its predictive performance will be validated.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Cirrhosis, Liver Sarcopenia

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

PROSPECTIVE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Age ≥18 years
* Diagnosis of liver cirrhosis, meeting at least one of the following criteria:
* Clinical diagnosis: ICD-10-CM codes K74.100 and K74.607 from our hospital's electronic medical record system
* Liver biopsy pathology or a combination of clinical, laboratory, and imaging examinations confirming liver cirrhosis: Pathological biopsy criteria: fibrosis bridging between lobules leading to lobular structural disarray, nodular regeneration of hepatocytes, formation of pseudo-lobules
* Laboratory tests: the presence of at least 2 of the following 4 abnormal indicators suggesting liver cirrhosis:
* a) Platelet count \< 100×10\^9/L, with no other explainable cause;
* b) Serum albumin \< 35g/L, excluding malnutrition or kidney disease as other causes;
* c) International normalized ratio (INR) \> 1.3 or prolonged prothrombin time (PT) (after discontinuation of thrombolytic or anticoagulant drugs for more than 7 days);
* d)Aspartate aminotransferase to platelet ratio index (APRI) \> 2.
* Availability of high-quality L3-level CT images

Exclusion Criteria

* Incomplete sociodemographic, laboratory, or imaging data
* Diagnosed or highly suspected malignancy
* Severe chronic kidney disease, respiratory insufficiency, cardiovascular diseases, etc.
* Neurological diseases and muscular degenerative diseases
* Hyperthyroidism, hypothyroidism, tuberculosis, or any other diseases that may affect basal metabolism
* Diseases or conditions causing malabsorption of intestinal nutrients, such as inflammatory bowel disease or gastrointestinal surgery
* Treatment with glucocorticoids or immunosuppressants
* Pregnancy or lactation
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Peking University People's Hospital

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Huang Rui

Principal Investigator

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Rui Huang, Dr.

Role: PRINCIPAL_INVESTIGATOR

Rui Huang, Dr. PekignUnviersity People's Hospital

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Rui Huang, Dr.

Role: CONTACT

86 10 66583771

References

Explore related publications, articles, or registry entries linked to this study.

Huang DQ, Terrault NA, Tacke F, Gluud LL, Arrese M, Bugianesi E, Loomba R. Global epidemiology of cirrhosis - aetiology, trends and predictions. Nat Rev Gastroenterol Hepatol. 2023 Jun;20(6):388-398. doi: 10.1038/s41575-023-00759-2. Epub 2023 Mar 28.

Reference Type BACKGROUND
PMID: 36977794 (View on PubMed)

Zeng X, Shi ZW, Yu JJ, Wang LF, Luo YY, Jin SM, Zhang LY, Tan W, Shi PM, Yu H, Zhang CQ, Xie WF. Sarcopenia as a prognostic predictor of liver cirrhosis: a multicentre study in China. J Cachexia Sarcopenia Muscle. 2021 Dec;12(6):1948-1958. doi: 10.1002/jcsm.12797. Epub 2021 Sep 14.

Reference Type BACKGROUND
PMID: 34520115 (View on PubMed)

Desai AP, Mohan P, Nokes B, Sheth D, Knapp S, Boustani M, Chalasani N, Fallon MB, Calhoun EA. Increasing Economic Burden in Hospitalized Patients With Cirrhosis: Analysis of a National Database. Clin Transl Gastroenterol. 2019 Jul;10(7):e00062. doi: 10.14309/ctg.0000000000000062.

Reference Type BACKGROUND
PMID: 31343469 (View on PubMed)

Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet. 2019 Jun 29;393(10191):2636-2646. doi: 10.1016/S0140-6736(19)31138-9. Epub 2019 Jun 3.

Reference Type BACKGROUND
PMID: 31171417 (View on PubMed)

Damluji AA, Alfaraidhy M, AlHajri N, Rohant NN, Kumar M, Al Malouf C, Bahrainy S, Ji Kwak M, Batchelor WB, Forman DE, Rich MW, Kirkpatrick J, Krishnaswami A, Alexander KP, Gerstenblith G, Cawthon P, deFilippi CR, Goyal P. Sarcopenia and Cardiovascular Diseases. Circulation. 2023 May 16;147(20):1534-1553. doi: 10.1161/CIRCULATIONAHA.123.064071. Epub 2023 May 15.

Reference Type BACKGROUND
PMID: 37186680 (View on PubMed)

Sinn DH, Kang D, Kang M, Guallar E, Hong YS, Lee KH, Park J, Cho J, Gwak GY. Nonalcoholic fatty liver disease and accelerated loss of skeletal muscle mass: A longitudinal cohort study. Hepatology. 2022 Dec;76(6):1746-1754. doi: 10.1002/hep.32578. Epub 2022 Jun 10.

Reference Type BACKGROUND
PMID: 35588190 (View on PubMed)

Han E, Lee YH, Kim BK, Park JY, Kim DY, Ahn SH, Lee BW, Kang ES, Cha BS, Han KH, Kim SU. Sarcopenia is associated with the risk of significant liver fibrosis in metabolically unhealthy subjects with chronic hepatitis B. Aliment Pharmacol Ther. 2018 Aug;48(3):300-312. doi: 10.1111/apt.14843. Epub 2018 Jun 19.

Reference Type BACKGROUND
PMID: 29920701 (View on PubMed)

Davuluri G, Welch N, Sekar J, Gangadhariah M, Alsabbagh Alchirazi K, Mohan ML, Kumar A, Kant S, Thapaliya S, Stine M, McMullen MR, McCullough RL, Stark GR, Nagy LE, Naga Prasad SV, Dasarathy S. Activated Protein Phosphatase 2A Disrupts Nutrient Sensing Balance Between Mechanistic Target of Rapamycin Complex 1 and Adenosine Monophosphate-Activated Protein Kinase, Causing Sarcopenia in Alcohol-Associated Liver Disease. Hepatology. 2021 May;73(5):1892-1908. doi: 10.1002/hep.31524. Epub 2021 Apr 20.

Reference Type BACKGROUND
PMID: 32799332 (View on PubMed)

Shafaat O, Liu Y, Jackson KR, Motter JD, Boyarsky BJ, Latif MA, Yuan F, Khalil A, King EA, Zaheer A, Summers RM, Segev DL, McAdams-DeMarco M, Weiss CR. Association between Abdominal CT Measurements of Body Composition before Deceased Donor Liver Transplant with Posttransplant Outcomes. Radiology. 2023 Mar;306(3):e212403. doi: 10.1148/radiol.212403. Epub 2022 Oct 25.

Reference Type BACKGROUND
PMID: 36283115 (View on PubMed)

Dasarathy S, Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol. 2016 Dec;65(6):1232-1244. doi: 10.1016/j.jhep.2016.07.040. Epub 2016 Aug 8.

Reference Type BACKGROUND
PMID: 27515775 (View on PubMed)

Kang SH, Jeong WK, Baik SK, Cha SH, Kim MY. Impact of sarcopenia on prognostic value of cirrhosis: going beyond the hepatic venous pressure gradient and MELD score. J Cachexia Sarcopenia Muscle. 2018 Oct;9(5):860-870. doi: 10.1002/jcsm.12333.

Reference Type BACKGROUND
PMID: 30371017 (View on PubMed)

van Vugt JLA, Alferink LJM, Buettner S, Gaspersz MP, Bot D, Darwish Murad S, Feshtali S, van Ooijen PMA, Polak WG, Porte RJ, van Hoek B, van den Berg AP, Metselaar HJ, IJzermans JNM. A model including sarcopenia surpasses the MELD score in predicting waiting list mortality in cirrhotic liver transplant candidates: A competing risk analysis in a national cohort. J Hepatol. 2018 Apr;68(4):707-714. doi: 10.1016/j.jhep.2017.11.030. Epub 2017 Dec 6.

Reference Type BACKGROUND
PMID: 29221886 (View on PubMed)

Bhanji RA, Moctezuma-Velazquez C, Duarte-Rojo A, Ebadi M, Ghosh S, Rose C, Montano-Loza AJ. Myosteatosis and sarcopenia are associated with hepatic encephalopathy in patients with cirrhosis. Hepatol Int. 2018 Jul;12(4):377-386. doi: 10.1007/s12072-018-9875-9. Epub 2018 Jun 7.

Reference Type BACKGROUND
PMID: 29881992 (View on PubMed)

Tosato M, Marzetti E, Cesari M, Savera G, Miller RR, Bernabei R, Landi F, Calvani R. Measurement of muscle mass in sarcopenia: from imaging to biochemical markers. Aging Clin Exp Res. 2017 Feb;29(1):19-27. doi: 10.1007/s40520-016-0717-0. Epub 2017 Feb 7.

Reference Type BACKGROUND
PMID: 28176249 (View on PubMed)

Prado CM, Heymsfield SB. Lean tissue imaging: a new era for nutritional assessment and intervention. JPEN J Parenter Enteral Nutr. 2014 Nov;38(8):940-53. doi: 10.1177/0148607114550189. Epub 2014 Sep 19.

Reference Type BACKGROUND
PMID: 25239112 (View on PubMed)

Chianca V, Albano D, Messina C, Gitto S, Ruffo G, Guarino S, Del Grande F, Sconfienza LM. Sarcopenia: imaging assessment and clinical application. Abdom Radiol (NY). 2022 Sep;47(9):3205-3216. doi: 10.1007/s00261-021-03294-3. Epub 2021 Oct 23.

Reference Type BACKGROUND
PMID: 34687326 (View on PubMed)

Pillen S, van Alfen N. Skeletal muscle ultrasound. Neurol Res. 2011 Dec;33(10):1016-24. doi: 10.1179/1743132811Y.0000000010.

Reference Type BACKGROUND
PMID: 22196753 (View on PubMed)

Sconfienza LM. Sarcopenia: ultrasound today, smartphones tomorrow? Eur Radiol. 2019 Jan;29(1):1-2. doi: 10.1007/s00330-018-5833-0. Epub 2018 Nov 12. No abstract available.

Reference Type BACKGROUND
PMID: 30421017 (View on PubMed)

Lenchik L, Boutin RD. Sarcopenia: Beyond Muscle Atrophy and into the New Frontiers of Opportunistic Imaging, Precision Medicine, and Machine Learning. Semin Musculoskelet Radiol. 2018 Jul;22(3):307-322. doi: 10.1055/s-0038-1641573. Epub 2018 May 23.

Reference Type BACKGROUND
PMID: 29791959 (View on PubMed)

Albano D, Chianca V, Tormenta S, Migliore A, Sconfienza LM. Old and new evidence concerning the crucial role of ultrasound in guiding intra-articular injections. Skeletal Radiol. 2017 Jul;46(7):963-964. doi: 10.1007/s00256-017-2644-3. Epub 2017 Apr 10. No abstract available.

Reference Type BACKGROUND
PMID: 28396961 (View on PubMed)

Carey EJ, Lai JC, Sonnenday C, Tapper EB, Tandon P, Duarte-Rojo A, Dunn MA, Tsien C, Kallwitz ER, Ng V, Dasarathy S, Kappus M, Bashir MR, Montano-Loza AJ. A North American Expert Opinion Statement on Sarcopenia in Liver Transplantation. Hepatology. 2019 Nov;70(5):1816-1829. doi: 10.1002/hep.30828. Epub 2019 Aug 19.

Reference Type BACKGROUND
PMID: 31220351 (View on PubMed)

Nishikawa H, Shiraki M, Hiramatsu A, Moriya K, Hino K, Nishiguchi S. Japan Society of Hepatology guidelines for sarcopenia in liver disease (1st edition): Recommendation from the working group for creation of sarcopenia assessment criteria. Hepatol Res. 2016 Sep;46(10):951-63. doi: 10.1111/hepr.12774.

Reference Type BACKGROUND
PMID: 27481650 (View on PubMed)

Moon SW, Choi JS, Lee SH, Jung KS, Jung JY, Kang YA, Park MS, Kim YS, Chang J, Kim SY. Thoracic skeletal muscle quantification: low muscle mass is related with worse prognosis in idiopathic pulmonary fibrosis patients. Respir Res. 2019 Feb 15;20(1):35. doi: 10.1186/s12931-019-1001-6.

Reference Type BACKGROUND
PMID: 30767787 (View on PubMed)

Tagliafico AS, Bignotti B, Torri L, Rossi F. Sarcopenia: how to measure, when and why. Radiol Med. 2022 Mar;127(3):228-237. doi: 10.1007/s11547-022-01450-3. Epub 2022 Jan 18.

Reference Type BACKGROUND
PMID: 35041137 (View on PubMed)

Ye Z, Saraf A, Ravipati Y, Hoebers F, Catalano PJ, Zha Y, Zapaishchykova A, Likitlersuang J, Guthier C, Tishler RB, Schoenfeld JD, Margalit DN, Haddad RI, Mak RH, Naser M, Wahid KA, Sahlsten J, Jaskari J, Kaski K, Makitie AA, Fuller CD, Aerts HJWL, Kann BH. Development and Validation of an Automated Image-Based Deep Learning Platform for Sarcopenia Assessment in Head and Neck Cancer. JAMA Netw Open. 2023 Aug 1;6(8):e2328280. doi: 10.1001/jamanetworkopen.2023.28280.

Reference Type BACKGROUND
PMID: 37561460 (View on PubMed)

Zhang H, Yin M, Liu Q, Ding F, Hou L, Deng Y, Cui T, Han Y, Pang W, Ye W, Yue J, He Y. Machine and deep learning-based clinical characteristics and laboratory markers for the prediction of sarcopenia. Chin Med J (Engl). 2023 Apr 20;136(8):967-973. doi: 10.1097/CM9.0000000000002633. Epub 2023 Apr 7.

Reference Type BACKGROUND
PMID: 37098831 (View on PubMed)

Blanc-Durand P, Schiratti JB, Schutte K, Jehanno P, Herent P, Pigneur F, Lucidarme O, Benaceur Y, Sadate A, Luciani A, Ernst O, Rouchaud A, Creze M, Dallongeville A, Banaste N, Cadi M, Bousaid I, Lassau N, Jegou S. Abdominal musculature segmentation and surface prediction from CT using deep learning for sarcopenia assessment. Diagn Interv Imaging. 2020 Dec;101(12):789-794. doi: 10.1016/j.diii.2020.04.011. Epub 2020 May 22.

Reference Type BACKGROUND
PMID: 32451309 (View on PubMed)

Gu S, Wang L, Han R, Liu X, Wang Y, Chen T, Zheng Z. Detection of sarcopenia using deep learning-based artificial intelligence body part measure system (AIBMS). Front Physiol. 2023 Jan 26;14:1092352. doi: 10.3389/fphys.2023.1092352. eCollection 2023.

Reference Type BACKGROUND
PMID: 36776966 (View on PubMed)

Yi J, Shin Y, Hahn S, Lee YH. Deep learning based sarcopenia prediction from shear-wave ultrasonographic elastography and gray scale ultrasonography of rectus femoris muscle. Sci Rep. 2022 Mar 4;12(1):3596. doi: 10.1038/s41598-022-07683-6.

Reference Type BACKGROUND
PMID: 35246589 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

2023PHB214-001

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.