Developments of Novel Virtual Visual and Haptic Stimulation Systems for the Elderly
NCT ID: NCT06435078
Last Updated: 2024-05-31
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
40 participants
INTERVENTIONAL
2017-03-06
2017-08-21
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Hand Training Device For Cognitive Care
NCT06417034
Virtual Reality in Cognitive Stimulation Therapy for Visually Impaired Older Individuals with Dementia
NCT06793384
Investigating the Efficacy of an Augmented Virtual Reality Driving Simulator on Institutionalized Dementia Patients
NCT06419257
Computerized Virtual Reality in Elderly
NCT04984694
The Feasibility Usability and Effectiveness of Fully Immersive Horticultural-based Virtual Reality Cognitive Training for Community-dwelling Elderly
NCT05837273
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
CROSSOVER
PREVENTION
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
AR-mPETS
subjects will be instructed to execute simulated piano playing tasks with Augmented Reality.
mPETS(modified-PETS system)
The pressing evaluation and training system (PETS) consists of five force transducers, a pad position-adjustable frame, and biofeedback system. Five force transducers are used to collect the applied normal force from five digits.
VR-mPETS
subjects will be instructed to execute simulated piano playing tasks with Virtual Reality.
mPETS(modified-PETS system)
The pressing evaluation and training system (PETS) consists of five force transducers, a pad position-adjustable frame, and biofeedback system. Five force transducers are used to collect the applied normal force from five digits.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
mPETS(modified-PETS system)
The pressing evaluation and training system (PETS) consists of five force transducers, a pad position-adjustable frame, and biofeedback system. Five force transducers are used to collect the applied normal force from five digits.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Healthy adult (no skeletal muscle, neurological disease that will affect training).
* Diagnosed with Alzheimer's disease.
* No skeletal muscle, neurological disease that will affect training.
Exclusion Criteria
* Musculoskeletal problems
* History of surgery Patients with Alzheimer's disease
20 Years
85 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
National Cheng-Kung University Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Fong Chin Su
Chair Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Fong-Chin Su
Role: PRINCIPAL_INVESTIGATOR
Chair Professor
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
National Cheng Kung University
Tainan City, , Taiwan
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Organization, W.H., Global health and aging. Acedido março, 2011. 5: p. 2015.
Grabiner MD, Enoka RM. Changes in movement capabilities with aging. Exerc Sport Sci Rev. 1995;23:65-104. No abstract available.
Ranganathan VK, Siemionow V, Sahgal V, Liu JZ, Yue GH. Skilled finger movement exercise improves hand function. J Gerontol A Biol Sci Med Sci. 2001 Aug;56(8):M518-22. doi: 10.1093/gerona/56.8.m518.
Olafsdottir HB, Zatsiorsky VM, Latash ML. The effects of strength training on finger strength and hand dexterity in healthy elderly individuals. J Appl Physiol (1985). 2008 Oct;105(4):1166-78. doi: 10.1152/japplphysiol.00054.2008. Epub 2008 Aug 7.
Keogh JW, Morrison S, Barrett R. Strength training improves the tri-digit finger-pinch force control of older adults. Arch Phys Med Rehabil. 2007 Aug;88(8):1055-63. doi: 10.1016/j.apmr.2007.05.014.
Kwok TC, Lam KC, Wong PS, Chau WW, Yuen KS, Ting KT, Chung EW, Li JC, Ho FK. Effectiveness of coordination exercise in improving cognitive function in older adults: a prospective study. Clin Interv Aging. 2011;6:261-7. doi: 10.2147/CIA.S19883. Epub 2011 Sep 29.
Zhang W, Scholz JP, Zatsiorsky VM, Latash ML. What do synergies do? Effects of secondary constraints on multidigit synergies in accurate force-production tasks. J Neurophysiol. 2008 Feb;99(2):500-13. doi: 10.1152/jn.01029.2007. Epub 2007 Nov 28.
Kim SW, Shim JK, Zatsiorsky VM, Latash ML. Finger inter-dependence: linking the kinetic and kinematic variables. Hum Mov Sci. 2008 Jun;27(3):408-22. doi: 10.1016/j.humov.2007.08.005. Epub 2008 Feb 5.
Shim JK, Lay BS, Zatsiorsky VM, Latash ML. Age-related changes in finger coordination in static prehension tasks. J Appl Physiol (1985). 2004 Jul;97(1):213-24. doi: 10.1152/japplphysiol.00045.2004. Epub 2004 Mar 5.
Parikh PJ, Cole KJ. Handling objects in old age: forces and moments acting on the object. J Appl Physiol (1985). 2012 Apr;112(7):1095-104. doi: 10.1152/japplphysiol.01385.2011. Epub 2012 Jan 12.
Shinohara M, Scholz JP, Zatsiorsky VM, Latash ML. Finger interaction during accurate multi-finger force production tasks in young and elderly persons. Exp Brain Res. 2004 Jun;156(3):282-92. doi: 10.1007/s00221-003-1786-9. Epub 2004 Feb 19.
Shinohara M, Li S, Kang N, Zatsiorsky VM, Latash ML. Effects of age and gender on finger coordination in MVC and submaximal force-matching tasks. J Appl Physiol (1985). 2003 Jan;94(1):259-70. doi: 10.1152/japplphysiol.00643.2002. Epub 2002 Sep 13.
Olafsdottir H, Zhang W, Zatsiorsky VM, Latash ML. Age-related changes in multifinger synergies in accurate moment of force production tasks. J Appl Physiol (1985). 2007 Apr;102(4):1490-501. doi: 10.1152/japplphysiol.00966.2006. Epub 2007 Jan 4.
Cobos, F.J.M. and M.d.M.M. Rodríguez, A Review of psychological intervention in Alzheimer s disease. International Journal of Psychology and Psychological Therapy, 2012. 12(3): p. 373-388.
Franssen EH, Souren LE, Torossian CL, Reisberg B. Equilibrium and limb coordination in mild cognitive impairment and mild Alzheimer's disease. J Am Geriatr Soc. 1999 Apr;47(4):463-9. doi: 10.1111/j.1532-5415.1999.tb07240.x.
Verheij S, Muilwijk D, Pel JJ, van der Cammen TJ, Mattace-Raso FU, van der Steen J. Visuomotor impairment in early-stage Alzheimer's disease: changes in relative timing of eye and hand movements. J Alzheimers Dis. 2012;30(1):131-43. doi: 10.3233/JAD-2012-111883.
Wu YH, Pazin N, Zatsiorsky VM, Latash ML. Improving finger coordination in young and elderly persons. Exp Brain Res. 2013 Apr;226(2):273-83. doi: 10.1007/s00221-013-3433-4. Epub 2013 Feb 15.
Langlois F, Vu TT, Chasse K, Dupuis G, Kergoat MJ, Bherer L. Benefits of physical exercise training on cognition and quality of life in frail older adults. J Gerontol B Psychol Sci Soc Sci. 2013 May;68(3):400-4. doi: 10.1093/geronb/gbs069. Epub 2012 Aug 28.
Shim JK, Karol S, Kim YS, Seo NJ, Kim YH, Kim Y, Yoon BC. Tactile feedback plays a critical role in maximum finger force production. J Biomech. 2012 Feb 2;45(3):415-20. doi: 10.1016/j.jbiomech.2011.12.001. Epub 2012 Jan 4.
Kim Y, Shim JK, Hong YK, Lee SH, Yoon BC. Cutaneous sensory feedback plays a critical role in agonist-antagonist co-activation. Exp Brain Res. 2013 Aug;229(2):149-56. doi: 10.1007/s00221-013-3601-6. Epub 2013 Jul 9.
Li K, Marquardt TL, Li ZM. Removal of visual feedback lowers structural variability of inter-digit force coordination during sustained precision pinch. Neurosci Lett. 2013 Jun 17;545:1-5. doi: 10.1016/j.neulet.2013.04.011. Epub 2013 Apr 24.
Ambike S, Zatsiorsky VM, Latash ML. Processes underlying unintentional finger-force changes in the absence of visual feedback. Exp Brain Res. 2015 Mar;233(3):711-21. doi: 10.1007/s00221-014-4148-x. Epub 2014 Nov 23.
Hu X, Newell KM. Aging, visual information, and adaptation to task asymmetry in bimanual force coordination. J Appl Physiol (1985). 2011 Dec;111(6):1671-80. doi: 10.1152/japplphysiol.00760.2011. Epub 2011 Sep 29.
Seo NJ, Fischer HW, Bogey RA, Rymer WZ, Kamper DG. Use of visual force feedback to improve digit force direction during pinch grip in persons with stroke: a pilot study. Arch Phys Med Rehabil. 2011 Jan;92(1):24-30. doi: 10.1016/j.apmr.2010.08.016. Epub 2010 Nov 18.
Hu X, Loncharich M, Newell KM. Visual information interacts with neuromuscular factors in the coordination of bimanual isometric force. Exp Brain Res. 2011 Mar;209(1):129-38. doi: 10.1007/s00221-010-2528-4. Epub 2010 Dec 28.
Loucks TM, Ofori E, Sosnoff JJ. Force control under auditory feedback: effector differences and audiomotor memory. Percept Mot Skills. 2012 Jun;114(3):915-35. doi: 10.2466/24.25.27.PMS.114.3.915-935.
Jo HJ, Ambike S, Lewis MM, Huang X, Latash ML. Finger force changes in the absence of visual feedback in patients with Parkinson's disease. Clin Neurophysiol. 2016 Jan;127(1):684-692. doi: 10.1016/j.clinph.2015.05.023. Epub 2015 Jun 3.
Stein J, Bishop J, Gillen G, Helbok R. A pilot study of robotic-assisted exercise for hand weakness after stroke. IEEE Int Conf Rehabil Robot. 2011;2011:5975426. doi: 10.1109/ICORR.2011.5975426.
Wu YH, Truglio TS, Zatsiorsky VM, Latash ML. Learning to combine high variability with high precision: lack of transfer to a different task. J Mot Behav. 2015;47(2):153-65. doi: 10.1080/00222895.2014.961892. Epub 2014 Nov 3.
Friedman N, Chan V, Reinkensmeyer AN, Beroukhim A, Zambrano GJ, Bachman M, Reinkensmeyer DJ. Retraining and assessing hand movement after stroke using the MusicGlove: comparison with conventional hand therapy and isometric grip training. J Neuroeng Rehabil. 2014 Apr 30;11:76. doi: 10.1186/1743-0003-11-76.
Tsai, M.-F., 中風病人手指創新復健器. 成功大學生物醫學工程學系學位論文, 2016: p. 1-94.
Levanon Y. The advantages and disadvantages of using high technology in hand rehabilitation. J Hand Ther. 2013 Apr-Jun;26(2):179-83. doi: 10.1016/j.jht.2013.02.002.
Manepalli, J., A. Desai, and P. Sharma, Psychosocial-environmental treatments for Alzheimer's disease. Primary Psychiatry, 2009. 16(6): p. 39.
Chiu HY, Hsu HY, Kuo LC, Chang JH, Su FC. Functional sensibility assessment. Part I: develop a reliable apparatus to assess momentary pinch force control. J Orthop Res. 2009 Aug;27(8):1116-21. doi: 10.1002/jor.20859.
Hsu HY, Kuo LC, Chiu HY, Jou IM, Su FC. Functional sensibility assessment. Part II: Effects of sensory improvement on precise pinch force modulation after transverse carpal tunnel release. J Orthop Res. 2009 Nov;27(11):1534-9. doi: 10.1002/jor.20903.
Shieh SJ, Hsu HY, Kuo LC, Su FC, Chiu HY. Correlation of digital sensibility and precision of pinch force modulation in patients with nerve repair. J Orthop Res. 2011 Aug;29(8):1210-5. doi: 10.1002/jor.21365. Epub 2011 Mar 4.
Hsu HY, Kuo LC, Kuo YL, Chiu HY, Jou IM, Wu PT, Su FC. Feasibility of a novel functional sensibility test as an assisted examination for determining precision pinch performance in patients with carpal tunnel syndrome. PLoS One. 2013 Aug 20;8(8):e72064. doi: 10.1371/journal.pone.0072064. eCollection 2013.
Yen WJ, Kuo YL, Kuo LC, Chen SM, Kuan TS, Hsu HY. Precision pinch performance in patients with sensory deficits of the median nerve at the carpal tunnel. Motor Control. 2014 Jan;18(1):29-43. doi: 10.1123/mc.2013-0004.
Chiu HY, Hsu HY, Su FC, Jou IM, Lin CF, Kuo LC. Setup of a novel biofeedback prototype for sensorimotor control of the hand and preliminary application in patients with peripheral nerve injuries. Phys Ther. 2013 Feb;93(2):168-78. doi: 10.2522/ptj.20120050. Epub 2012 Sep 27.
Hsu HY, Lin CF, Su FC, Kuo HT, Chiu HY, Kuo LC. Clinical application of computerized evaluation and re-education biofeedback prototype for sensorimotor control of the hand in stroke patients. J Neuroeng Rehabil. 2012 May 9;9:26. doi: 10.1186/1743-0003-9-26.
Hsu HY, Kuo LC, Jou IM, Chen SM, Chiu HY, Su FC. Establishment of a proper manual tactile test for hands with sensory deficits. Arch Phys Med Rehabil. 2013 Mar;94(3):451-8. doi: 10.1016/j.apmr.2012.07.024. Epub 2012 Aug 9.
Hsu HY, Kuo YL, Jou IM, Su FC, Chiu HY, Kuo LC. Diagnosis from functional perspectives: usefulness of a manual tactile test for predicting precision pinch performance and disease severity in subjects with carpal tunnel syndrome. Arch Phys Med Rehabil. 2014 Apr;95(4):717-25. doi: 10.1016/j.apmr.2013.11.017. Epub 2013 Dec 16.
Hsu HY, Shieh SJ, Kuan TS, Yang HC, Su FC, Chiu HY, Kuo LC. Manual Tactile Test Predicts Sensorimotor Control Capability of Hands for Patients With Peripheral Nerve Injury. Arch Phys Med Rehabil. 2016 Jun;97(6):983-90. doi: 10.1016/j.apmr.2016.01.008. Epub 2016 Jan 30.
Chiu HY, Hsu HY, Kuo LC, Su FC, Yu HI, Hua SC, Lu CH. How the impact of median neuropathy on sensorimotor control capability of hands for diabetes: an achievable assessment from functional perspectives. PLoS One. 2014 Apr 10;9(4):e94452. doi: 10.1371/journal.pone.0094452. eCollection 2014.
Hsu HY, Chiu HY, Lin HT, Su FC, Lu CH, Kuo LC. Impacts of elevated glycaemic haemoglobin and disease duration on the sensorimotor control of hands in diabetes patients. Diabetes Metab Res Rev. 2015 May;31(4):385-94. doi: 10.1002/dmrr.2623. Epub 2015 Feb 3.
Yang CJ, Hsu HY, Lu CH, Chao YL, Chiu HY, Kuo LC. The associations among hand dexterity, functional performance, and quality of life in diabetic patients with neuropathic hand from objective- and patient-perceived measurements. Qual Life Res. 2015 Jan;24(1):213-21. doi: 10.1007/s11136-014-0748-y. Epub 2014 Jul 14.
Chen PT, Jou IM, Lin CJ, Chieh HF, Kuo LC, Su FC. Is the Control of Applied Digital Forces During Natural Five-digit Grasping Affected by Carpal Tunnel Syndrome? Clin Orthop Relat Res. 2015 Jul;473(7):2371-82. doi: 10.1007/s11999-015-4189-x. Epub 2015 Feb 18.
Chen PT, Lin CJ, Jou IM, Chieh HF, Su FC, Kuo LC. One digit interruption: the altered force patterns during functionally cylindrical grasping tasks in patients with trigger digits. PLoS One. 2013 Dec 31;8(12):e83632. doi: 10.1371/journal.pone.0083632. eCollection 2013.
Kuo LC, Chen SW, Lin CJ, Lin WJ, Lin SC, Su FC. The force synergy of human digits in static and dynamic cylindrical grasps. PLoS One. 2013;8(3):e60509. doi: 10.1371/journal.pone.0060509. Epub 2013 Mar 27.
Kuo LC, Hsu HM, Wu PT, Lin SC, Hsu HY, Jou IM. Impact of distal median neuropathy on handwriting performance for patients with carpal tunnel syndrome in office and administrative support occupations. J Occup Rehabil. 2014 Jun;24(2):332-43. doi: 10.1007/s10926-013-9471-8.
Hsu, H.-M., et al., Quantification of handwriting performance: Development of a force acquisition pen for measuring hand-grip and pen tip forces. Measurement, 2013. 46(1): p. 506-513.
Lai, K.-Y., et al., Effects of hand span size and right-left hand side on the piano playing performances: Exploration of the potential risk factors with regard to piano-related musculoskeletal disorders. International Journal of Industrial Ergonomics, 2015. 50: p. 97-104.
Park J, Wu YH, Lewis MM, Huang X, Latash ML. Changes in multifinger interaction and coordination in Parkinson's disease. J Neurophysiol. 2012 Aug 1;108(3):915-24. doi: 10.1152/jn.00043.2012. Epub 2012 May 2.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
B-ER-105-238
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.