Personalized Rendering of Motor System Functional Plasticity Potential to Improve Glioma Resection and Quality of Life
NCT ID: NCT06381726
Last Updated: 2024-04-24
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
400 participants
INTERVENTIONAL
2024-03-07
2028-02-28
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Hypothesis The plastic potential of motor system suggests that reorganization of circuits controlling hand movements could be presurgically fostered in LGG patients by enhancing plasticity with up-front motor-rehabilitation and/or by decreasing tumor infiltration with up-front chemotherapy. Advanced neuroimaging allows to infer the neuroplasticity potential. Intraoperative assessment of the motor circuits functionality will validate reliability of preoperative analyses.
Aims The project has 4 aims, investigating: A) the presurgical functional (FC) and structural (SC) connectomics of the hand-motor network to picture the spontaneous reorganization and the influence of clinical, imaging and histomolecular variables; B) the dynamic of FC and SC after tumor resection; C) changes in FC and SC maps after personalized upfront motor rehabilitation and/or chemotherapy; D) the effect of FC and SC upfront treatment on the achievement of GTR/STR preserving hand dexterity.
Experimental Design Resting-state fMRI and diffusion-MRI will provide FC and SC maps pre- and post-surgery; personalized up-front motor rehabilitation and/or chemotherapy will be administered; Intraoperative brain mapping procedures will generate data to validate the maps.
Expected Results
1. Provide a tool to render the motor functional reorganization predictive of surgical outcome.
2. Identify demographic, clinical and imaging variables associated with functional reorganization.
3. Describe the gain induced by up-front treatment.
4. Distinguish "patterns" predicting chance for GTR/STR from "patterns" suggesting need for up-front treatment.
Impact On Cancer Results will increase the achievement of GTR/STR, preserving motor integrity, with dramatic impact on LGGs natural history.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Improving Surgical Outcomes in Patients With Low Grade Gliomas Using Advanced Pre- and Intra-operative MRI
NCT02884947
Comparative Study of Intraoperative MRI-guided vs. Conventional Glioma Surgery
NCT01394692
A Study Using Brain Stimulation and Behavioral Therapy to Increase Extent of Resection in Low-Grade Gliomas
NCT04745156
Presurgical Planning With Functional MRI (fMRI) Mapping of Motor Cortex in Patients With Cerebral Tumors
NCT00724737
Natural History of Brain Function, Quality of Life, and Seizure Control in Patients With Brain Tumor Who Have Undergone Surgery
NCT01417507
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
PARALLEL
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Spontaneous motor reorganization: observation
Only neurological and neuropsychological assessment as per normal clinical routine and conventional and advanced functional, resting-state MRI acquisitions
Resting State Functional Magnetic Resonance Imaging (rs-fMRI)
rs-fMRI + neurological and neuropsychological evaluation at preoperative timepoint and 1-2 months postop, 3-4 months postop, 6-8 months postop, 12 months postop
Enhanced motor reorganization: upfront Motor Rehabilitation
Patients submitted to motor rehabilitation program aimed at learning unimanual and bimanual coordinated sequences, along with personalized exercise according to tumor location (frontal vs parietal). For 6 months each patient will perform the motor training program in outpatient training session, checked by a physiotherapist for corrected execution at home 3 times/week, and is assessed for the correct training execution and progresses in training sessions each month, by physical therapists at the Rehabilitation Unit and on a weekly schedule by on-line distant monitoring (telemedicine).
Up-front Motor Rehabilitation
personalized motor rehabilitation for 6 months + rs-fMRI + neurological and neuropsychological evaluation before starting motor rehabilitation, at 2-3 months during rehabilitation, 6-9 months during rehabilitation, before surgery (if surgery indicated by tumour board), 1 month postop, 2-3 months postop
Enhanced motor reorganization: upfront Chemotherapy
Temozolomide-based regimen of 6 months duration is applied. Treatment will be discontinued in case of toxicity (G2-G4).
Up-front Chemotherapy
Temozolomide at either 6 cycles consisting of 150-200 mg per square meter for 5 days during each 28-day cycle, or metronomic schedule, + rs-fMRI + neurological and neuropsychological evaluation before starting motor rehabilitation, at 2-3 months during rehabilitation, 6-9 months during rehabilitation, before surgery (if surgery indicated by tumour board), 1 month postop, 2-3 months Post
Enhanced motor reorganization: upfront Chemotherapy + Motor Rehabilitation
Temozolomide-based regimen of 6 months duration is applied. Treatment will be discontinued in case of toxicity (G2-G4).
Patients will also be submitted to motor rehabilitation program aimed at learning unimanual and bimanual coordinated sequences, along with personalized exercise according to tumor location (frontal vs parietal). For 6 months each patient will perform the motor training program in outpatient training session, checked by a physiotherapist for corrected execution at home 3 times/week, and is assessed for the correct training execution and progresses in training sessions each month, by physical therapists at the Rehabilitation Unit and on a weekly schedule by on-line distant monitoring (telemedicine).
Up-front Motor Rehabilitation
personalized motor rehabilitation for 6 months + rs-fMRI + neurological and neuropsychological evaluation before starting motor rehabilitation, at 2-3 months during rehabilitation, 6-9 months during rehabilitation, before surgery (if surgery indicated by tumour board), 1 month postop, 2-3 months postop
Up-front Chemotherapy
Temozolomide at either 6 cycles consisting of 150-200 mg per square meter for 5 days during each 28-day cycle, or metronomic schedule, + rs-fMRI + neurological and neuropsychological evaluation before starting motor rehabilitation, at 2-3 months during rehabilitation, 6-9 months during rehabilitation, before surgery (if surgery indicated by tumour board), 1 month postop, 2-3 months Post
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Resting State Functional Magnetic Resonance Imaging (rs-fMRI)
rs-fMRI + neurological and neuropsychological evaluation at preoperative timepoint and 1-2 months postop, 3-4 months postop, 6-8 months postop, 12 months postop
Up-front Motor Rehabilitation
personalized motor rehabilitation for 6 months + rs-fMRI + neurological and neuropsychological evaluation before starting motor rehabilitation, at 2-3 months during rehabilitation, 6-9 months during rehabilitation, before surgery (if surgery indicated by tumour board), 1 month postop, 2-3 months postop
Up-front Chemotherapy
Temozolomide at either 6 cycles consisting of 150-200 mg per square meter for 5 days during each 28-day cycle, or metronomic schedule, + rs-fMRI + neurological and neuropsychological evaluation before starting motor rehabilitation, at 2-3 months during rehabilitation, 6-9 months during rehabilitation, before surgery (if surgery indicated by tumour board), 1 month postop, 2-3 months Post
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Males and females
* Age ≥ 18 years
* Patients with lower-grade gliomas with involvement of the motor pathways who are candidates for surgery
* Patients signing informed consent for participation in the study
* Males and females
* Age ≥ 18 years
* Patients with lower-grade gliomas treated over two years with tumors only biopsied and/or partially resected and eligible for second surgery
Exclusion Criteria
* Inability to adhere to standard study controls
* Subjects unable to understand and freely provide consent to the study
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Turin, Italy
OTHER
University of Milan
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Lorenzo Bello
Full Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Lorenzo Bello, MD
Role: PRINCIPAL_INVESTIGATOR
University of Milan
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
IRCCS Ospedale Galeazzi Sant'Ambrogio
Milan, Lombardy, Italy
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Bello L, Riva M, Fava E, Ferpozzi V, Castellano A, Raneri F, Pessina F, Bizzi A, Falini A, Cerri G. Tailoring neurophysiological strategies with clinical context enhances resection and safety and expands indications in gliomas involving motor pathways. Neuro Oncol. 2014 Aug;16(8):1110-28. doi: 10.1093/neuonc/not327. Epub 2014 Feb 4.
Castellano A, Donativi M, Ruda R, De Nunzio G, Riva M, Iadanza A, Bertero L, Rucco M, Bello L, Soffietti R, Falini A. Evaluation of low-grade glioma structural changes after chemotherapy using DTI-based histogram analysis and functional diffusion maps. Eur Radiol. 2016 May;26(5):1263-73. doi: 10.1007/s00330-015-3934-6. Epub 2015 Aug 30.
Cochereau J, Deverdun J, Herbet G, Charroud C, Boyer A, Moritz-Gasser S, Le Bars E, Molino F, Bonafe A, Menjot de Champfleur N, Duffau H. Comparison between resting state fMRI networks and responsive cortical stimulations in glioma patients. Hum Brain Mapp. 2016 Nov;37(11):3721-3732. doi: 10.1002/hbm.23270.
Fornia L, Ferpozzi V, Montagna M, Rossi M, Riva M, Pessina F, Martinelli Boneschi F, Borroni P, Lemon RN, Bello L, Cerri G. Functional Characterization of the Left Ventrolateral Premotor Cortex in Humans: A Direct Electrophysiological Approach. Cereb Cortex. 2018 Jan 1;28(1):167-183. doi: 10.1093/cercor/bhw365.
Fornia L, Rossi M, Rabuffetti M, Leonetti A, Puglisi G, Vigano L, Simone L, Howells H, Bellacicca A, Bello L, Cerri G. Direct Electrical Stimulation of Premotor Areas: Different Effects on Hand Muscle Activity during Object Manipulation. Cereb Cortex. 2020 Jan 10;30(1):391-405. doi: 10.1093/cercor/bhz139.
Fornia L, Rossi M, Rabuffetti M, Bellacicca A, Vigano L, Simone L, Howells H, Puglisi G, Leonetti A, Callipo V, Bello L, Cerri G. Motor impairment evoked by direct electrical stimulation of human parietal cortex during object manipulation. Neuroimage. 2022 Mar;248:118839. doi: 10.1016/j.neuroimage.2021.118839. Epub 2021 Dec 25.
Howells H, Puglisi G, Leonetti A, Vigano L, Fornia L, Simone L, Forkel SJ, Rossi M, Riva M, Cerri G, Bello L. The role of left fronto-parietal tracts in hand selection: Evidence from neurosurgery. Cortex. 2020 Jul;128:297-311. doi: 10.1016/j.cortex.2020.03.018. Epub 2020 Apr 10.
Kong NW, Gibb WR, Badhe S, Liu BP, Tate MC. Plasticity of the Primary Motor Cortex in Patients with Primary Brain Tumors. Neural Plast. 2020 Jul 3;2020:3648517. doi: 10.1155/2020/3648517. eCollection 2020.
Puglisi G, Howells H, Sciortino T, Leonetti A, Rossi M, Conti Nibali M, Gabriel Gay L, Fornia L, Bellacicca A, Vigano L, Simone L, Catani M, Cerri G, Bello L. Frontal pathways in cognitive control: direct evidence from intraoperative stimulation and diffusion tractography. Brain. 2019 Aug 1;142(8):2451-2465. doi: 10.1093/brain/awz178.
Raffin E, Siebner HR. Use-Dependent Plasticity in Human Primary Motor Hand Area: Synergistic Interplay Between Training and Immobilization. Cereb Cortex. 2019 Jan 1;29(1):356-371. doi: 10.1093/cercor/bhy226.
Rossi M, Fornia L, Puglisi G, Leonetti A, Zuccon G, Fava E, Milani D, Casarotti A, Riva M, Pessina F, Cerri G, Bello L. Assessment of the praxis circuit in glioma surgery to reduce the incidence of postoperative and long-term apraxia: a new intraoperative test. J Neurosurg. 2019 Jan 1;130(1):17-27. doi: 10.3171/2017.7.JNS17357. Epub 2018 Feb 23.
Rossi M, Ambrogi F, Gay L, Gallucci M, Conti Nibali M, Leonetti A, Puglisi G, Sciortino T, Howells H, Riva M, Pessina F, Navarria P, Franzese C, Simonelli M, Ruda R, Bello L. Is supratotal resection achievable in low-grade gliomas? Feasibility, putative factors, safety, and functional outcome. J Neurosurg. 2019 May 17;132(6):1692-1705. doi: 10.3171/2019.2.JNS183408. Print 2020 Jun 1.
Rossi M, Conti Nibali M, Vigano L, Puglisi G, Howells H, Gay L, Sciortino T, Leonetti A, Riva M, Fornia L, Cerri G, Bello L. Resection of tumors within the primary motor cortex using high-frequency stimulation: oncological and functional efficiency of this versatile approach based on clinical conditions. J Neurosurg. 2019 Aug 9;133(3):642-654. doi: 10.3171/2019.5.JNS19453. Print 2020 Sep 1.
Rossi M, Sciortino T, Conti Nibali M, Gay L, Vigano L, Puglisi G, Leonetti A, Howells H, Fornia L, Cerri G, Riva M, Bello L. Clinical Pearls and Methods for Intraoperative Motor Mapping. Neurosurgery. 2021 Feb 16;88(3):457-467. doi: 10.1093/neuros/nyaa359.
Rossi M, Gay L, Ambrogi F, Conti Nibali M, Sciortino T, Puglisi G, Leonetti A, Mocellini C, Caroli M, Cordera S, Simonelli M, Pessina F, Navarria P, Pace A, Soffietti R, Ruda R, Riva M, Bello L. Association of supratotal resection with progression-free survival, malignant transformation, and overall survival in lower-grade gliomas. Neuro Oncol. 2021 May 5;23(5):812-826. doi: 10.1093/neuonc/noaa225.
Rossi M, Vigano L, Puglisi G, Conti Nibali M, Leonetti A, Gay L, Sciortino T, Fornia L, Callipo V, Lamperti M, Riva M, Cerri G, Bello L. Targeting Primary Motor Cortex (M1) Functional Components in M1 Gliomas Enhances Safe Resection and Reveals M1 Plasticity Potentials. Cancers (Basel). 2021 Jul 28;13(15):3808. doi: 10.3390/cancers13153808.
Sanes JN, Donoghue JP. Plasticity and primary motor cortex. Annu Rev Neurosci. 2000;23:393-415. doi: 10.1146/annurev.neuro.23.1.393.
Simone L, Fornia L, Vigano L, Sambataro F, Rossi M, Leonetti A, Puglisi G, Howells H, Bellacicca A, Bello L, Cerri G. Large scale networks for human hand-object interaction: Functionally distinct roles for two premotor regions identified intraoperatively. Neuroimage. 2020 Jan 1;204:116215. doi: 10.1016/j.neuroimage.2019.116215. Epub 2019 Sep 24.
Southwell DG, Hervey-Jumper SL, Perry DW, Berger MS. Intraoperative mapping during repeat awake craniotomy reveals the functional plasticity of adult cortex. J Neurosurg. 2016 May;124(5):1460-9. doi: 10.3171/2015.5.JNS142833. Epub 2015 Nov 6.
Sun L, Yin D, Zhu Y, Fan M, Zang L, Wu Y, Jia J, Bai Y, Zhu B, Hu Y. Cortical reorganization after motor imagery training in chronic stroke patients with severe motor impairment: a longitudinal fMRI study. Neuroradiology. 2013 Jul;55(7):913-25. doi: 10.1007/s00234-013-1188-z. Epub 2013 Apr 26.
Takeuchi N, Izumi S. Combinations of stroke neurorehabilitation to facilitate motor recovery: perspectives on Hebbian plasticity and homeostatic metaplasticity. Front Hum Neurosci. 2015 Jun 23;9:349. doi: 10.3389/fnhum.2015.00349. eCollection 2015.
van Dokkum LEH, Moritz Gasser S, Deverdun J, Herbet G, Mura T, D'Agata B, Picot MC, Menjot de Champfleur N, Duffau H, Molino F, le Bars E. Resting state network plasticity related to picture naming in low-grade glioma patients before and after resection. Neuroimage Clin. 2019;24:102010. doi: 10.1016/j.nicl.2019.102010. Epub 2019 Oct 24.
Vigano L, Fornia L, Rossi M, Howells H, Leonetti A, Puglisi G, Conti Nibali M, Bellacicca A, Grimaldi M, Bello L, Cerri G. Anatomo-functional characterisation of the human "hand-knob": A direct electrophysiological study. Cortex. 2019 Apr;113:239-254. doi: 10.1016/j.cortex.2018.12.011. Epub 2018 Dec 24.
Vigano L, Howells H, Fornia L, Rossi M, Conti Nibali M, Puglisi G, Leonetti A, Simone L, Bello L, Cerri G. Negative motor responses to direct electrical stimulation: Behavioral assessment hides different effects on muscles. Cortex. 2021 Apr;137:194-204. doi: 10.1016/j.cortex.2021.01.005. Epub 2021 Jan 29.
Vigano L, Howells H, Rossi M, Rabuffetti M, Puglisi G, Leonetti A, Bellacicca A, Conti Nibali M, Gay L, Sciortino T, Cerri G, Bello L, Fornia L. Stimulation of frontal pathways disrupts hand muscle control during object manipulation. Brain. 2022 May 24;145(4):1535-1550. doi: 10.1093/brain/awab379.
Weller M, van den Bent M, Preusser M, Le Rhun E, Tonn JC, Minniti G, Bendszus M, Balana C, Chinot O, Dirven L, French P, Hegi ME, Jakola AS, Platten M, Roth P, Ruda R, Short S, Smits M, Taphoorn MJB, von Deimling A, Westphal M, Soffietti R, Reifenberger G, Wick W. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol. 2021 Mar;18(3):170-186. doi: 10.1038/s41571-020-00447-z. Epub 2020 Dec 8.
Zhao Z, Wang X, Fan M, Yin D, Sun L, Jia J, Tang C, Zheng X, Jiang Y, Wu J, Gong J. Altered Effective Connectivity of the Primary Motor Cortex in Stroke: A Resting-State fMRI Study with Granger Causality Analysis. PLoS One. 2016 Nov 15;11(11):e0166210. doi: 10.1371/journal.pone.0166210. eCollection 2016.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
Progetto AIRC IG-2022 ID 27184
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.