QT Changes in Geriatric Patients: a Comparison of Spinal and General Anesthesia

NCT ID: NCT06375863

Last Updated: 2024-04-19

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

58 participants

Study Classification

INTERVENTIONAL

Study Start Date

2023-03-29

Study Completion Date

2023-05-29

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

QT interval, defined as the time between the beginning of the QRS complex and the end of the T wave in electrocardiography (ECG), is an indicator of depolarization and repolarization of the myocardium.11 Prolongation of the heart rate corrected QT (QTc) interval reflects electrical instability of ventricles and is associated with life-threatening ventricular arrhythmias, including torsade de pointes, ventricular fibrillation and sudden cardiac death.

Spinal anesthesia can cause profound prolongation of the QTc interval due to disparity between lumbar and thoracic sympathetic activity following subarachnoid block. Meanwhile inhalational anesthetics, sevoflurane, isoflurane, and desflurane are known to prolong QTc interval and intravenous anesthetics such as propofol, thiopental, etomidate and ketamin can also cause remarkable prolongation of the QTc interval. Moreover laryngoscopy and intubation may contribute to prolongation of the QTc interval because of the sympathetic stimulation.

Over the years it has been occurred an increase in the proportion of elderly population requiring surgical anesthesia. The incidence of ventricular arrhythmias increases in advancing age even in the absence of underlying heart disease and elderly patients have reduced physiological functions and poor tolerance to anesthesia. However the choice of anesthesia type is critical in this population.

To the best of knowledge, there was no published study to compare spinal anesthesia and inhalational anesthesia in elderly patients with regard to the QT interval changes. Investigators aimed to investigate the effects of spinal anesthesia on QT, QTc intervals and to compare general anesthesia with sevofluran in elderly patients.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Investigators designed a prospective, randomized trial to compare spinal and general anesthesia in elderly patients on the effects of QT interval changes. The study protocol was approved by the Health Science University Haseki Training and Research Hospital Ethics Committee, Istanbul, Turkey (date: 03/29/2023 and number: 44-2023). This study was conducted according to the Declaration of Helsinki, and written informed consent was obtained from all patients. The study was performed at a tertiary referral hospital with 700 beds in Istanbul, Turkey between 03/29/2023-05/29/2023.

The patients who will undergo lower abdominal or extremity surgery and urological surgery older than 65 years will be included in this study. The exclusion criteria are as follows: any preoperative ECG abnormalities, QTc interval \> 440 ms, family history of long QT syndome, use of any medications known to affect the QTc interval, serum electrolyte abnormalities, any contraindications for spinal anesthesia (e.g. coagulation disorders), unstable angina pektoris, chronic obstructive pulmonary disease, hepatic or renal failure, American Society of Anesthesiologists (ASA) physical classification status \> III, pregnancy and obesity (BMI \> 30).

Participants will be divided into two groups: the spinal anesthesia (group S) and general anesthesia (group G). Randomization and group allocations will be performed by a researcher who did not participate the collection of data.

In the preoperative care unit all patients will receive 10 ml/kg Ringer's lactate solution via a peripheral vein over 30 minutes. In the operating room premedication will be obtained with 0.015 mg/kg of midazolam and 1 µg/kg fentanyl intravenously.

In group G, a 2.0 mg/kg propofol injection will be used for the induction of anesthesia and facilitating of endotracheal intubation was provided with 0.6 mg/kg rocuronium. After the intubation the patients will be ventilated with a 6-8 ml/kg of tidal volume in volume control ventilation (VCV) mode with an anesthesia machine (Dräger Primus, Dräger Medical Systems, Inc. Danvers, MA, USA). Frequency of respiration will be adjusted to maintain PET CO2 at 32-36 mm Hg. Maintenance of anesthesia will be provided with sevoflurane (1.5-2%) in an oxygen-air mixture (FiO2 = 0.4) and 0.015 mg/kg rocuronium as needed. At the end of the surgery residual neuromuscular block will be antagonized with 4 mg/kg sugammedex.

In group S, spinal anesthesia will be performed in the sitting position at the level of L3-4 or L4-5 using a 25-gauge Whitacre (pencil point) spinal needle after the obtaining strict sterile conditions and local anesthesia with intradermal lidocaine hydrochloride 1%. Hyperbaric bupivacaine (Marcaine Spinal 0.5% Heavy; AstraZeneca, Turkey) 3-4 mL of 0.5% will be injected to the subarachnoid space with the observation of cerebrospinal fluid outflow. The patient was placed in the supine position immediately after drug injection. Dermatomal level of sensorial block will be evaluated with pinprick test and modified Bormage scale was used to assess motor blockade. Surgery will be allowed after the achievement of sensorial block at the T10 level.

Monitoring and data collection Non-invasive blood pressure, heart rate (HR), peripheral oxygen saturation (SpO2) and continuous ECG monitorization will be obtained for all patients throughout the study via Mindray Bene View T8 (Shenzhen Mindray Bio-Medical Electronics Co., LTD, PR China. The QT interval will be measured automatically in lead II and calculation of the QTc interval was also achieved automatically with using Bazett's formula (QTc=QT/radqRR(sec)) from ECG monitorization. QT and QTc intervals will be measured and recorded in the following manner: before the anesthesia induction or subarachnoid injection (in group S), 1, 5, 10 minute after after endotracheal intubation or subarachnoid injection (in group S), and immediately after surgery. Presence of arrhythmia will also be recorded.

Patient characteristics including age, gender, height, weight, body mass index (BMI), comorbidity, ASA physical status classification and duration of surgery will be recorded. Moreover maximum sensory block level and motor block recovery time will be investigated in the group S. Also all cardiopulmonary adverse events will be evaluated including hypotension (decrease in mean blood pressure \> 20%), bradycardia (HR \< 50 beats/min) and hypoxemia (SpO2 \< 90%).

Statistical analysis SPSS software package for Windows (Statistical Package for Social Sciences, version 22.0, SPSS Inc., Chicago, Illinois, USA) will be used for statistical analysis of study data. Quantitative variables were emitted as mean ± standard deviation (SD), whereas categorical variables as number of patients and percentage. Quantitative variables will be evaluated for distribution normality using the Kolmogorov-Smirnov/Shapiro-Wilk's test and independent student's t-test will be used to compare normally distributed variables between groups. To compare categorical variables chi-square or Fisher's exact test will be used. QT and QTc intervals within groups will be investigated with repeated measures analysis of variance and post hoc multiple comparisons will be performed by Bonferroni test. Sample size calculation was based on QTc interval. Based on a previous study, QTc interval was found 397.3±27.4 msec after spinal anesthesia in non-geriatric patients. Power analysis with α = 0.05 and β = 0.2 to detect an increase of at least 20 msec in QTc interval revealed that a min of 28 patients should be included in each group. A p value \< 0.05 was considered to show a statistically significant result.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Anesthesia, Spinal Sevoflurane Long QT Syndrome

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

DIAGNOSTIC

Blinding Strategy

SINGLE

Outcome Assessors

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

spinal anesthesia

patients who scheduled lower abdominal or urological surgery under spinal anesthesia older than 65 years

Group Type OTHER

QT and QTc interval

Intervention Type DIAGNOSTIC_TEST

measuring of QT and QTc on ECG

general anesthesia

patients who scheduled lower abdominal or urological surgery under general anesthesia older than 65 years

Group Type OTHER

QT and QTc interval

Intervention Type DIAGNOSTIC_TEST

measuring of QT and QTc on ECG

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

QT and QTc interval

measuring of QT and QTc on ECG

Intervention Type DIAGNOSTIC_TEST

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* patients who scheduled lower abdominal or extremity surgery and urological surgery older than 65 years were enrolled to the study.

Exclusion Criteria

* any preoperative ECG abnormalities, QTc interval \> 440 ms, family history of long QT syndome, use of any medications known to affect the QTc interval, serum electrolyte abnormalities, any contraindications for spinal anesthesia (e.g. coagulation disorders), unstable angina pektoris, chronic obstructive pulmonary disease, hepatic or renal failure, American Society of Anesthesiologists (ASA) physical classification status \> III, pregnancy and obesity (BMI \> 30).
Minimum Eligible Age

18 Years

Maximum Eligible Age

65 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Haseki Training and Research Hospital

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Sinan Uzman

associate prof

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

sinan uzman, Assoc. Prof.

Role: STUDY_DIRECTOR

Health Science University Haseki Training and Research Hospital

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Health Science University, Haseki Training and Research Hospital

Istanbul, , Turkey (Türkiye)

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Turkey (Türkiye)

References

Explore related publications, articles, or registry entries linked to this study.

Song JH, Yang C, Lee W, Kim H, Kim Y, Kim H. QTc interval prolongation due to spinal anesthesia in patients with and without diabetes: an observational study. BMC Anesthesiol. 2022 May 13;22(1):143. doi: 10.1186/s12871-022-01614-8.

Reference Type BACKGROUND
PMID: 35562669 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

44-2023

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

LQT and Smartphone/Smartwatch
NCT04728100 COMPLETED
Recurrent Ventricular Arrythmias in ICU
NCT07033065 NOT_YET_RECRUITING