End Tidal Carbon Dioxide Concentration and Depth of Anesthesia in Children
NCT ID: NCT06303518
Last Updated: 2025-03-25
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
100 participants
INTERVENTIONAL
2024-06-25
2026-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
During general anesthesia, anesthesiologists keep patients asleep with anesthetic gases or by giving medications into a vein. These drugs can depress breathing; therefore, an anesthesiologist will control breathing (ventilation) with an artificial airway such as an endotracheal tube. Changes in ventilation can alter the amount of CO2 removed from the body. The anesthesiologist may also monitor a patient's level of consciousness using a 'Depth of Anesthesia Monitor' such as the Bispectral Index (BIS), which analyzes a patient's brain activity and generates a number to tell the anesthesiologist how asleep they are.
The investigator's study will test if different levels of CO2 during intravenous anesthesia are linked with different levels of sedation or sleepiness in children, as measured by BIS. If so, this could reduce the amount of anesthetic medication the child receives. Other benefits may be decreased medication costs, fewer side effects, and a positive environmental impact by using less disposable anesthesia equipment.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
The Effect of Different End-tidal Carbon-dioxide Levels on Cerebral CO2 Vasoreactivity and the Stiffness of Systemic Arteries During Propofol Anesthesia
NCT02203097
Effect of Anesthesia Induction on Cerebral Hemodynamic in Children
NCT04581213
The Effects of the Anesthetic Drug Propofol on the Way the Heart Recovers Between Beats
NCT00358618
Regional Anesthesia in Cardiac Pediatric Patients Less Than 5 Years Old
NCT02652117
Effects of Hypercapnia on Emergence From General Anesthesia Under Propofol
NCT01531491
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
It is a known phenomenon for high levels of CO2 to be associated with reduced levels of consciousness in humans, known as CO2 narcosis. A 1927 paper described narcosis of animals when breathing 30-40% CO2 in oxygen, with prompt recovery upon removal. The authors described a 'sharp sour taste' and associated hypertension when the same solution was administered to humans. However, few studies investigate the impact of carbon dioxide on anesthetic requirements. An animal study from 1967 demonstrated that very high levels of CO2 (\>95 mmHg) offset halothane requirements in dogs. Most recently, increased carbon dioxide levels during surgery (40 - 45 mmHg) were shown to reduce the Minimal Alveolar Concentration to Blunt Adrenergic Response (skin incision; MAC-BAR) of sevoflurane in adult patients undergoing gastric carcinoma resection.
Total intravenous anesthesia (TIVA), an alternative to inhalational anesthesia, is a commonly used anesthetic technique in the investigator's institution. This is due to its many benefits, including reduced emergence delirium, reduced environmental impact and reduced post-operative nausea and vomiting. Administration can be guided by depth of anesthesia monitoring such as the Bispectral Index (BIS), which measures the patient's level of consciousness derived from electroencephalogram readings. BIS has been shown to help guide propofol dosing in children regardless of whether the TIVA technique was target controlled or a manual infusion regimen, and to correlate well with both modelled and measured propofol levels in children.
The investigator's study aims to determine whether differing levels of CO2 affect the anesthetic depth in anesthetized children, as measured by BIS.
Hypothesis: Hypercarbia is associated with a reduction in BIS readings, in anesthetized children.
Justification: The impact of EtCO2 on BIS has not been studied in children. If discovered, a correlation between the two could significantly change anesthetic practice. It is straightforward to increase EtCO2 levels in anesthetized patients, and if this was found to reduce their anesthetic requirements it could enable lower rates of anesthetic drug administration. This would benefit the patient by exposing them to less medication and fewer associated side effects, as well as benefitting the hospital and wider environment by reducing cost and use of disposable equipment such as ampoules, packaging and syringes.
Objectives: (1) To determine the effect of EtCO2 on the depth of anesthesia in children, as measured by BIS.
(2) Patient movement as detected clinically by the surgical or anesthetic team.
Research Design: The investigators plan to conduct a randomized, prospective, crossover trial. The within-subject design allows patients to act as their own controls. The order in which the EtCO2 levels are tested will be randomized between patients using sealed envelopes. The anesthesiologist in the room will be blinded to the BIS reading but will be informed by a research assistant if it reads persistently high (\>60) for over one minute.
Statistical analysis: Physiological data will be collected in real-time using purpose-built software. Patient demographics and characteristics will be collected by a research assistant. Time-series plots of BIS and EtCO2 for each participant will be made in R (R Foundation for Statistical Computing, Vienna, Austria). Generalized estimating equations (GEE), using the geepack package, will be applied to estimate the effect of changes in target EtCO2 on serial BIS measurements during the anesthesia maintenance phase. Each participant will be considered their own data cluster to provide an appropriate grouping structure for the analysis. An independent correlation structure will be applied, and a robust (sandwich) estimator method will be used to obtain standard errors.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
CROSSOVER
1. Normal ETCO2 -\> High Normal ETCO2 -\> Low Normal ETCO2
2. Normal ETCO2 -\> Low Normal ETCO2 -\> High Normal ETCO2
3. High Normal ETCO2 -\> Low Normal ETCO2 -\> Normal ETCO2
4. High Normal ETCO2 -\> Normal ETCO2 -\> Low Normal ETCO2
5. Low Normal ETCO2 -\> High Normal ETCO2 -\> Normal ETCO2
6. Low Normal ETCO2 -\> Normal ETCO2 -\> High Normal ETCO2
OTHER
SINGLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
High normal ETCO2, Normal ETCO2, Low normal ETCO2
All patients will receive same interventions, in a randomised order.
High normal ETCO2: ETCO2 50 mmHg (+/- 3mmHg)
BIS readings will be recorded continuously at 'High Normal ETCO2' (50 mmHg +/- 3 mmHg). Each patient will be tested at High normal, normal, and low normal ETCO2 levels in a randomized order.
Normal ETCO2: ETCO2 40 mmHg (+/- 3mmHg)
BIS readings will be recorded continuously at 'Normal ETCO2' (40 mmHg +/- 3 mmHg). Each patient will be tested at High normal, normal, and low normal ETCO2 levels in a randomized order.
Low Normal ETCO2: ETCO2 30 mmHg (+/- 3mmHg)
BIS readings will be recorded continuously at 'Low Normal ETCO2' (30 mmHg +/- 3 mmHg). Each patient will be tested at High normal, normal, and low normal ETCO2 levels in a randomized order.
High normal ETCO2, Low normal ETCO2, Normal ETCO2
All patients will receive same interventions, in a randomised order.
High normal ETCO2: ETCO2 50 mmHg (+/- 3mmHg)
BIS readings will be recorded continuously at 'High Normal ETCO2' (50 mmHg +/- 3 mmHg). Each patient will be tested at High normal, normal, and low normal ETCO2 levels in a randomized order.
Normal ETCO2: ETCO2 40 mmHg (+/- 3mmHg)
BIS readings will be recorded continuously at 'Normal ETCO2' (40 mmHg +/- 3 mmHg). Each patient will be tested at High normal, normal, and low normal ETCO2 levels in a randomized order.
Low Normal ETCO2: ETCO2 30 mmHg (+/- 3mmHg)
BIS readings will be recorded continuously at 'Low Normal ETCO2' (30 mmHg +/- 3 mmHg). Each patient will be tested at High normal, normal, and low normal ETCO2 levels in a randomized order.
Low normal ETCO2, Normal ETCO2, High normal ETCO2
All patients will receive same interventions, in a randomised order.
High normal ETCO2: ETCO2 50 mmHg (+/- 3mmHg)
BIS readings will be recorded continuously at 'High Normal ETCO2' (50 mmHg +/- 3 mmHg). Each patient will be tested at High normal, normal, and low normal ETCO2 levels in a randomized order.
Normal ETCO2: ETCO2 40 mmHg (+/- 3mmHg)
BIS readings will be recorded continuously at 'Normal ETCO2' (40 mmHg +/- 3 mmHg). Each patient will be tested at High normal, normal, and low normal ETCO2 levels in a randomized order.
Low Normal ETCO2: ETCO2 30 mmHg (+/- 3mmHg)
BIS readings will be recorded continuously at 'Low Normal ETCO2' (30 mmHg +/- 3 mmHg). Each patient will be tested at High normal, normal, and low normal ETCO2 levels in a randomized order.
Low normal ETCO2, High normal ETCO2, Normal ETCO2
All patients will receive same interventions, in a randomised order.
High normal ETCO2: ETCO2 50 mmHg (+/- 3mmHg)
BIS readings will be recorded continuously at 'High Normal ETCO2' (50 mmHg +/- 3 mmHg). Each patient will be tested at High normal, normal, and low normal ETCO2 levels in a randomized order.
Normal ETCO2: ETCO2 40 mmHg (+/- 3mmHg)
BIS readings will be recorded continuously at 'Normal ETCO2' (40 mmHg +/- 3 mmHg). Each patient will be tested at High normal, normal, and low normal ETCO2 levels in a randomized order.
Low Normal ETCO2: ETCO2 30 mmHg (+/- 3mmHg)
BIS readings will be recorded continuously at 'Low Normal ETCO2' (30 mmHg +/- 3 mmHg). Each patient will be tested at High normal, normal, and low normal ETCO2 levels in a randomized order.
Normal ETCO2, Low normal ETCO2, High normal ETCO2
All patients will receive same interventions, in a randomised order.
High normal ETCO2: ETCO2 50 mmHg (+/- 3mmHg)
BIS readings will be recorded continuously at 'High Normal ETCO2' (50 mmHg +/- 3 mmHg). Each patient will be tested at High normal, normal, and low normal ETCO2 levels in a randomized order.
Normal ETCO2: ETCO2 40 mmHg (+/- 3mmHg)
BIS readings will be recorded continuously at 'Normal ETCO2' (40 mmHg +/- 3 mmHg). Each patient will be tested at High normal, normal, and low normal ETCO2 levels in a randomized order.
Low Normal ETCO2: ETCO2 30 mmHg (+/- 3mmHg)
BIS readings will be recorded continuously at 'Low Normal ETCO2' (30 mmHg +/- 3 mmHg). Each patient will be tested at High normal, normal, and low normal ETCO2 levels in a randomized order.
Normal ETCO2, High normal ETCO2, Low normal ETCO2
All patients will receive same interventions, in a randomised order.
High normal ETCO2: ETCO2 50 mmHg (+/- 3mmHg)
BIS readings will be recorded continuously at 'High Normal ETCO2' (50 mmHg +/- 3 mmHg). Each patient will be tested at High normal, normal, and low normal ETCO2 levels in a randomized order.
Normal ETCO2: ETCO2 40 mmHg (+/- 3mmHg)
BIS readings will be recorded continuously at 'Normal ETCO2' (40 mmHg +/- 3 mmHg). Each patient will be tested at High normal, normal, and low normal ETCO2 levels in a randomized order.
Low Normal ETCO2: ETCO2 30 mmHg (+/- 3mmHg)
BIS readings will be recorded continuously at 'Low Normal ETCO2' (30 mmHg +/- 3 mmHg). Each patient will be tested at High normal, normal, and low normal ETCO2 levels in a randomized order.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
High normal ETCO2: ETCO2 50 mmHg (+/- 3mmHg)
BIS readings will be recorded continuously at 'High Normal ETCO2' (50 mmHg +/- 3 mmHg). Each patient will be tested at High normal, normal, and low normal ETCO2 levels in a randomized order.
Normal ETCO2: ETCO2 40 mmHg (+/- 3mmHg)
BIS readings will be recorded continuously at 'Normal ETCO2' (40 mmHg +/- 3 mmHg). Each patient will be tested at High normal, normal, and low normal ETCO2 levels in a randomized order.
Low Normal ETCO2: ETCO2 30 mmHg (+/- 3mmHg)
BIS readings will be recorded continuously at 'Low Normal ETCO2' (30 mmHg +/- 3 mmHg). Each patient will be tested at High normal, normal, and low normal ETCO2 levels in a randomized order.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* American Society of Anesthesiologists (ASA) physical status I and II
* TIVA technique appropriate throughout induction and maintenance of anesthesia
* Controlled ventilation via endotracheal tube
* Anticipated surgical time ≥ 90 minutes: to allow time for anesthetic induction and subsequent testing and washout periods at all three EtCO2 levels.
Exclusion Criteria
* Sedative premedication
* Use of ketamine intraoperatively
* Unable to place BIS electrodes due to surgical site or other contraindications (e.g., MRI)
* Allergy to study drugs (propofol, remifentanil, lidocaine)
* Depression of conscious level for any reason
* BMI \<5th or \>95th centile for age
* History of obstructive or central sleep apnea
* Known or suspected raised intracranial pressure
* Recent or historical traumatic brain injury
3 Years
11 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of British Columbia
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Christopher Chin
Clinical Associate Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Christopher A Chin, MBBS, FRCA, FRCP, MA
Role: PRINCIPAL_INVESTIGATOR
University of British Columbia
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
BC Children's Hospital
Vancouver, British Columbia, Canada
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
WOODBURY DM, KARLER R. The role of carbon dioxide in the nervous system. Anesthesiology. 1960 Nov-Dec;21:686-703. doi: 10.1097/00000542-196011000-00012. No abstract available.
Fukuda T, Hisano S, Toyooka H. Moderate hypercapnia-induced anesthetic effects and endogenous opioids. Neurosci Lett. 2006 Jul 31;403(1-2):20-3. doi: 10.1016/j.neulet.2006.04.026. Epub 2006 May 15.
Gronroos M, Pertovaara A. A selective suppression of human pain sensitivity by carbon dioxide: central mechanisms implicated. Eur J Appl Physiol Occup Physiol. 1994;68(1):74-9. doi: 10.1007/BF00599245.
Akca O, Liem E, Suleman MI, Doufas AG, Galandiuk S, Sessler DI. Effect of intra-operative end-tidal carbon dioxide partial pressure on tissue oxygenation. Anaesthesia. 2003 Jun;58(6):536-42. doi: 10.1046/j.1365-2044.2003.03193.x.
Saghaei M, Matin G, Golparvar M. Effects of intra-operative end-tidal carbon dioxide levels on the rates of post-operative complications in adults undergoing general anesthesia for percutaneous nephrolithotomy: A clinical trial. Adv Biomed Res. 2014 Feb 28;3:84. doi: 10.4103/2277-9175.127997. eCollection 2014.
Katznelson R, Djaiani G, Naughton F, Wasowicz M, Ragoonanan T, Duffin J, Fedorko L, Murphy J, Fisher JA. Post-operative hypercapnia-induced hyperpnoea accelerates recovery from sevoflurane anaesthesia: a prospective randomised controlled trial. Acta Anaesthesiol Scand. 2013 May;57(5):623-30. doi: 10.1111/aas.12093. Epub 2013 Mar 3.
Yamaguchi J, Kinoshita K, Hosokawa T, Ihara S. "The eyes are the windows of the soul": Portable automated pupillometry to monitor autonomic nervous activity in CO2 narcosis: A case report. Medicine (Baltimore). 2023 May 12;102(19):e33768. doi: 10.1097/MD.0000000000033768.
Leake CD, Waters RM. Leake CD, Waters RM (1928) The anaesthetic properties of carbon dioxide. J Pharmacol Exp Ther 33:280-281. In.
Eisele JH, Eger EI 2nd, Muallem M. Narcotic properties of carbon dioxide in the dog. Anesthesiology. 1967 Sep-Oct;28(5):856-65. doi: 10.1097/00000542-196709000-00019. No abstract available.
Wu Z, Yu J, Zhang T, Tan H, Li H, Xie L, Lin W, Shen D, Cao L. Effects of Etco2 on the Minimum Alveolar Concentration of Sevoflurane that Blunts the Adrenergic Response to Surgical Incision: A Prospective, Randomized, Double-Blinded Trial. Anesth Analg. 2022 Jul 1;135(1):62-70. doi: 10.1213/ANE.0000000000005784. Epub 2022 Jun 16.
Chandler JR, Myers D, Mehta D, Whyte E, Groberman MK, Montgomery CJ, Ansermino JM. Emergence delirium in children: a randomized trial to compare total intravenous anesthesia with propofol and remifentanil to inhalational sevoflurane anesthesia. Paediatr Anaesth. 2013 Apr;23(4):309-15. doi: 10.1111/pan.12090.
Narayanan H, Raistrick C, Tom Pierce JM, Shelton C. Carbon footprint of inhalational and total intravenous anaesthesia for paediatric anaesthesia: a modelling study. Br J Anaesth. 2022 Aug;129(2):231-243. doi: 10.1016/j.bja.2022.04.022. Epub 2022 Jun 18.
Biallas R, Rusch D, de Decker W, Wulf H, Siebrecht D, Scholz J. [Prophylaxis of postoperative nausea and vomiting (PONV) in children undergoing strabismus surgery. Sevoflurane/N2O plus dimenhydrinate vs.propofol/remifentanil plus dimenhydrinate]. Anaesthesist. 2003 Jul;52(7):586-95. doi: 10.1007/s00101-003-0516-9. Epub 2003 Jun 18. German.
Marchant N, Sanders R, Sleigh J, Vanhaudenhuyse A, Bruno MA, Brichant JF, Laureys S, Bonhomme V. How electroencephalography serves the anesthesiologist. Clin EEG Neurosci. 2014 Jan;45(1):22-32. doi: 10.1177/1550059413509801. Epub 2014 Jan 10.
Louvet N, Rigouzzo A, Sabourdin N, Constant I. Bispectral index under propofol anesthesia in children: a comparative randomized study between TIVA and TCI. Paediatr Anaesth. 2016 Sep;26(9):899-908. doi: 10.1111/pan.12957.
Rigouzzo A, Khoy-Ear L, Laude D, Louvet N, Moutard ML, Sabourdin N, Constant I. EEG profiles during general anesthesia in children: A comparative study between sevoflurane and propofol. Paediatr Anaesth. 2019 Mar;29(3):250-257. doi: 10.1111/pan.13579. Epub 2019 Feb 12.
Rigouzzo A, Girault L, Louvet N, Servin F, De-Smet T, Piat V, Seeman R, Murat I, Constant I. The relationship between bispectral index and propofol during target-controlled infusion anesthesia: a comparative study between children and young adults. Anesth Analg. 2008 Apr;106(4):1109-16, table of contents. doi: 10.1213/ane.0b013e318164f388.
Jeleazcov C, Ihmsen H, Schmidt J, Ammon C, Schwilden H, Schuttler J, Fechner J. Pharmacodynamic modelling of the bispectral index response to propofol-based anaesthesia during general surgery in children. Br J Anaesth. 2008 Apr;100(4):509-16. doi: 10.1093/bja/aem408. Epub 2008 Feb 12.
McFarlan CS, Anderson BJ, Short TG. The use of propofol infusions in paediatric anaesthesia: a practical guide. Paediatr Anaesth. 1999;9(3):209-16.
Habre W, Disma N, Virag K, Becke K, Hansen TG, Johr M, Leva B, Morton NS, Vermeulen PM, Zielinska M, Boda K, Veyckemans F; APRICOT Group of the European Society of Anaesthesiology Clinical Trial Network. Incidence of severe critical events in paediatric anaesthesia (APRICOT): a prospective multicentre observational study in 261 hospitals in Europe. Lancet Respir Med. 2017 May;5(5):412-425. doi: 10.1016/S2213-2600(17)30116-9. Epub 2017 Mar 28.
Whitesell R, Asiddao C, Gollman D, Jablonski J. Relationship between arterial and peak expired carbon dioxide pressure during anesthesia and factors influencing the difference. Anesth Analg. 1981 Jul;60(7):508-12.
Wang F, Zhang J, Yu J, Tian M, Cui X, Wu A. Variation of bispectral index in children aged 1-12 years under propofol anesthesia: an observational study. BMC Anesthesiol. 2019 Aug 7;19(1):145. doi: 10.1186/s12871-019-0815-6.
Davidson A, Skowno J. Neuromonitoring in paediatric anaesthesia. Curr Opin Anaesthesiol. 2019 Jun;32(3):370-376. doi: 10.1097/ACO.0000000000000732.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
H23-03546
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.