Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
29 participants
INTERVENTIONAL
2024-02-28
2024-09-17
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
This is two-armed pilot randomized controlled trial taking place in an inpatient neurologic rehabilitation clinic. A total of 30 persons that are undergoing inpatient rehabilitation due to a stroke will be randomly assigned to either the intervention group (IG) or the control group (CG). Participants of the IG will receive exergame-based motor-cognitive training on a labile surface, whereas participants of the CG will train on a stable surface. Primary outcome is feasibility comprising measures of adherence, attrition, safety and usability. Secondary outcomes will be measures of cognitive (psychomotor speed, inhibition, selective attention, cognitive flexibility, brain activity) and motor (functional mobility, gait speed, balance, proprioception) functioning.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Computerized Cognitive Rehabilitation of Executive Deficits in Stroke Patients
NCT05169632
Exergames in In-patient Rehabilitation
NCT04872153
Upper Limb Function and Visuospatial Exploration After Stroke
NCT03135093
Neuroathletic Training in Stroke Rehabilitation? A Single-blind Randomized Controlled Pilot Study on the Potentials of Neuroathletic Training on Balance Ability in Stroke Outpatient Rehabilitation
NCT06391801
Effects of Cognitive-Motor Exergame Using Dividat Senso on Physical and Cognitive Function in Stroke Patients
NCT06806384
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Balance training is an established form of exercise in people suffering from stroke and other neurological disabilities. However, cognitive-motor training is superior to single physical training in improving motor functioning e.g. gait speed and walking endurance in stroke patients. More specifically, compared to sequential (e.g. cycling followed by cognitive training) and simultaneous-additional (e.g. cycling while solving an arithmetical task), simultaneous-incorporated motor-cognitive training (e.g. any type of training in which the cognitive task is "incorporated" into the motor task, i.e. the cognitive task is a relevant prerequisite to successfully solve the motor-cognitive task) seems to be the most promising training type for improving gait speed and potentially other functions in stroke patients.
Exergames (interactive (cognitive) games which are played by body movements) are an excellent tool for the delivery of simultaneous-incorporated cognitive-motor training and they have already been used in the context of several frail and neurologic populations, including stroke patients.
Proprioception is used to stabilize the body by sensing its position in space via the sense of joint and limb positioning. Proprioception training addresses the balance and somatosensory stimulation and can therefore build a possible prevention strategy for further falls and of managing ADLs. Combining proprioceptive training with simultaneous cognitive tasks could have additional positive outcomes in stroke rehabilitation. Indeed, a recent systematic review concluded that proprioceptive and dual-task exercises stimulate and promote postural balance, gait, and quality of life and reduce the risk of falls in stroke patients compared with traditional rehabilitation programs.
There is currently just one study that has looked into the effects of exergame-based cognitive-motor training with the additional proprioceptive stimulation (by playing the exergames on a labile platform). They found that compared to the training on a stable platform and to a passive control group, training on an instable platform is more effective for the improvement of reactive balance and functional mobility under dual-task conditions in healthy, community-dwelling older adults. The feasibility and effects of this type of training (exergame training on labile surface and thus rich in proprioceptive stimulation) in stroke patients remains unknown.
Therefore, the aim of this study is to assess the feasibility and effects of exergame-based cognitive-motor training on a labile platform on physical and cognitive functioning in stroke inpatients.
The investigators hypothesize that exergame-based cognitive-motor on a labile surface will be feasible within the context of inpatient rehabilitation of stroke patients. In addition, the investigators hypothesize that compared to training on stable surface, training on a labile platform will be more effective for the improvement of motor and cognitive functioning in stroke inpatients.
This is two-armed pilot randomized controlled trial taking place in an inpatient neurologic rehabilitation clinic. A total of 30 persons that are undergoing inpatient rehabilitation due to a stroke will be randomly assigned to either the intervention group (IG) or the control group (CG). Participants of the IG will receive exergame-based motor-cognitive training on a labile surface, whereas participants of the CG will train on a stable surface. Primary outcome is feasibility comprising measures of adherence, attrition, safety and usability. Secondary outcomes will be measures of cognitive (psychomotor speed, inhibition, selective attention, cognitive flexibility, brain activity) and motor (functional mobility, gait speed, balance, proprioception) functioning.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Intervention group
The intervention group will conduct an exergame-based cognitive-motor intervention on a unstable surface (on top of their standard inpatient treatment).
Intervention duration will be tailored to the stay in the inpatient rehabilitation clinic (3-4 weeks). Training sessions will last 20-28 minutes (progressive increase).
exergame-based cognitive-motor training on an unstable surface
The intervention group will receive an exergame-based cognitive-sensorimotor intervention on an unstable surface (by placing the exergame device (Senso) on an unstable surface).
The Senso is a platform for the dynamic recording of steps, weight shifts and other body movements producing forces. For the labile condition, the Senso is mounted on steel balls, allowing the platform to swing freely along the horizontal plane. There is no movement induced by the platform itself. Sway is only induced when the participant steps and shifts the center of pressure. The degree of instability and movement of the platform can be adjusted by inducing a dampening. The dampening can be set manually, either to on or off. When damping is on, the movement can be reduced by predefined percentages. The maximum displacement of the platform is thereby 100 mm to each side.
Control group
The intervention group will conduct an exergame-based cognitive-motor intervention on a stable surface (on top of their standard inpatient treatment).
Intervention duration will be tailored to the stay in the inpatient rehabilitation clinic (3-4 weeks). Training sessions will last 20-28 minutes (progressive increase).
exergame-based cognitive-motor training on an stable surface
The control group will receive an exergame-based cognitive-motor intervention on an stable surface using the exergame device Senso.
The Senso is a platform for the dynamic recording of steps, weight shifts and other body movements producing forces.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
exergame-based cognitive-motor training on an unstable surface
The intervention group will receive an exergame-based cognitive-sensorimotor intervention on an unstable surface (by placing the exergame device (Senso) on an unstable surface).
The Senso is a platform for the dynamic recording of steps, weight shifts and other body movements producing forces. For the labile condition, the Senso is mounted on steel balls, allowing the platform to swing freely along the horizontal plane. There is no movement induced by the platform itself. Sway is only induced when the participant steps and shifts the center of pressure. The degree of instability and movement of the platform can be adjusted by inducing a dampening. The dampening can be set manually, either to on or off. When damping is on, the movement can be reduced by predefined percentages. The maximum displacement of the platform is thereby 100 mm to each side.
exergame-based cognitive-motor training on an stable surface
The control group will receive an exergame-based cognitive-motor intervention on an stable surface using the exergame device Senso.
The Senso is a platform for the dynamic recording of steps, weight shifts and other body movements producing forces.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Ability to provide a signed informed consent
* Mini-Mental State Examination (MMSE) score ≥ 20
* Physically able to stand for at least 3 minutes without external support (self-report)
Exclusion Criteria
* Conservatively treated osteoporotic fractures in the last 16 weeks
* Depending on assistance for ambulation (Functional Ambulation Categories \<2),
* Mobility, cognitive, sensory and/or psychiatric limitations or comorbidities which impair the ability to play the exergames and/or conduct the pre-/post assessments
50 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Eleftheria Giannouli
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Eleftheria Giannouli
Dr.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Eleftheria Giannouli, PhD
Role: PRINCIPAL_INVESTIGATOR
ETH Zurich
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Rehaklinik Zihlschlacht
Zihlschlacht-Sitterdorf, Thurgau, Switzerland
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Abbott RD, Curb JD, Rodriguez BL, Masaki KH, Popper JS, Ross GW, Petrovitch H. Age-related changes in risk factor effects on the incidence of thromboembolic and hemorrhagic stroke. J Clin Epidemiol. 2003 May;56(5):479-86. doi: 10.1016/s0895-4356(02)00611-x.
Katan M, Luft A. Global Burden of Stroke. Semin Neurol. 2018 Apr;38(2):208-211. doi: 10.1055/s-0038-1649503. Epub 2018 May 23.
Chen X, Liu F, Lin S, Yu L, Lin R. Effects of Virtual Reality Rehabilitation Training on Cognitive Function and Activities of Daily Living of Patients With Poststroke Cognitive Impairment: A Systematic Review and Meta-Analysis. Arch Phys Med Rehabil. 2022 Jul;103(7):1422-1435. doi: 10.1016/j.apmr.2022.03.012. Epub 2022 Apr 10.
Lipardo DS, Tsang WWN. Falls prevention through physical and cognitive training (falls PACT) in older adults with mild cognitive impairment: a randomized controlled trial protocol. BMC Geriatr. 2018 Aug 24;18(1):193. doi: 10.1186/s12877-018-0868-2.
Chiaramonte R, Bonfiglio M, Leonforte P, Coltraro GL, Guerrera CS, Vecchio M. Proprioceptive and Dual-Task Training: The Key of Stroke Rehabilitation, A Systematic Review. J Funct Morphol Kinesiol. 2022 Jul 7;7(3):53. doi: 10.3390/jfmk7030053.
Mura G, Carta MG, Sancassiani F, Machado S, Prosperini L. Active exergames to improve cognitive functioning in neurological disabilities: a systematic review and meta-analysis. Eur J Phys Rehabil Med. 2018 Jun;54(3):450-462. doi: 10.23736/S1973-9087.17.04680-9. Epub 2017 Oct 25.
Wuest S, van de Langenberg R, de Bruin ED. Design considerations for a theory-driven exergame-based rehabilitation program to improve walking of persons with stroke. Eur Rev Aging Phys Act. 2014;11(2):119-129. doi: 10.1007/s11556-013-0136-6. Epub 2013 Dec 7.
Jaggi S, Wachter A, Adcock M, de Bruin ED, Moller JC, Marks D, Schweinfurther R, Giannouli E. Feasibility and effects of cognitive-motor exergames on fall risk factors in typical and atypical Parkinson's inpatients: a randomized controlled pilot study. Eur J Med Res. 2023 Jan 16;28(1):30. doi: 10.1186/s40001-022-00963-x.
Bowie CR, Harvey PD. Administration and interpretation of the Trail Making Test. Nat Protoc. 2006;1(5):2277-81. doi: 10.1038/nprot.2006.390.
Altorfer P, Adcock M, de Bruin ED, Graf F, Giannouli E. Feasibility of Cognitive-Motor Exergames in Geriatric Inpatient Rehabilitation: A Pilot Randomized Controlled Study. Front Aging Neurosci. 2021 Nov 29;13:739948. doi: 10.3389/fnagi.2021.739948. eCollection 2021.
Subramaniam S, Wang S, Bhatt T. Dance-based exergaming on postural stability and kinematics in people with chronic stroke - A preliminary study. Physiother Theory Pract. 2022 Nov;38(13):2714-2726. doi: 10.1080/09593985.2021.1994072. Epub 2021 Dec 2.
Morat M, Bakker J, Hammes V, Morat T, Giannouli E, Zijlstra W, Donath L. Effects of stepping exergames under stable versus unstable conditions on balance and strength in healthy community-dwelling older adults: A three-armed randomized controlled trial. Exp Gerontol. 2019 Nov;127:110719. doi: 10.1016/j.exger.2019.110719. Epub 2019 Sep 9.
Brooke, J., SUS: A quick and dirty usability scale. Usability Eval. Ind., 1995. 189.
Lohmann, K. and J. Schäffer, System Usability Scale (SUS)-An Improved German Translation of the Questionnaire, 2013. URL https://minds. coremedia. com/2013/09/18/sus-scale-an-improved-german-translation-questionnaire, 2015.
Bangor, A., P. Kortum, and J. Miller, Determining What Individual SUS Scores Mean: Adding an Adjective Rating Scale. J. Usability Stud., 2009. 4: p. 114-123.
Hart, S., Nasa-task load index (Nasa-TLX); 20 years later. Vol. 50. 2006.
Reitan, R.M., Validity of the Trail Making Test as an Indicator of Organic Brain Damage. Perceptual and Motor Skills, 1958. 8(3): p. 271-276.
Tombaugh TN. Trail Making Test A and B: normative data stratified by age and education. Arch Clin Neuropsychol. 2004 Mar;19(2):203-14. doi: 10.1016/S0887-6177(03)00039-8.
Zimmermann, P. and B. Fimm, A test battery for attentional performance. Applied neuropsychology of attention. Theory, diagnosis and rehabilitation, 2002. 110: p. 151.
Salarian A, Horak FB, Zampieri C, Carlson-Kuhta P, Nutt JG, Aminian K. iTUG, a sensitive and reliable measure of mobility. IEEE Trans Neural Syst Rehabil Eng. 2010 Jun;18(3):303-10. doi: 10.1109/TNSRE.2010.2047606. Epub 2010 Apr 12.
Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991 Feb;39(2):142-8. doi: 10.1111/j.1532-5415.1991.tb01616.x.
Wright DL, Kemp TL. The dual-task methodology and assessing the attentional demands of ambulation with walking devices. Phys Ther. 1992 Apr;72(4):306-12; discussion 313-5. doi: 10.1093/ptj/72.4.306.
Wulf G, McNevin N, Shea CH. The automaticity of complex motor skill learning as a function of attentional focus. Q J Exp Psychol A. 2001 Nov;54(4):1143-54. doi: 10.1080/713756012.
Mancini M, King L, Salarian A, Holmstrom L, McNames J, Horak FB. Mobility Lab to Assess Balance and Gait with Synchronized Body-worn Sensors. J Bioeng Biomed Sci. 2011 Dec 12;Suppl 1:007. doi: 10.4172/2155-9538.S1-007.
Mancini M, Salarian A, Carlson-Kuhta P, Zampieri C, King L, Chiari L, Horak FB. ISway: a sensitive, valid and reliable measure of postural control. J Neuroeng Rehabil. 2012 Aug 22;9:59. doi: 10.1186/1743-0003-9-59.
Dite W, Temple VA. A clinical test of stepping and change of direction to identify multiple falling older adults. Arch Phys Med Rehabil. 2002 Nov;83(11):1566-71. doi: 10.1053/apmr.2002.35469.
Schott N. [German adaptation of the "Activities-Specific Balance Confidence (ABC) scale" for the assessment of falls-related self-efficacy]. Z Gerontol Geriatr. 2008 Dec;41(6):475-85. doi: 10.1007/s00391-007-0504-9. German.
Altmeier D, Giannouli E. German translation and psychometric properties of the modified Gait Efficacy Scale (mGES). Z Gerontol Geriatr. 2020 May;53(3):251-255. doi: 10.1007/s00391-019-01507-5. Epub 2019 Feb 6.
Scarpina F, Tagini S. The Stroop Color and Word Test. Front Psychol. 2017 Apr 12;8:557. doi: 10.3389/fpsyg.2017.00557. eCollection 2017.
Buttiker J, Marks D, Hanke M, Ludyga S, Marsico P, Eggimann B, Giannouli E. Cognitive-motor exergame training on a labile surface in stroke inpatients: study protocol for a randomized controlled trial. Front Neurol. 2024 Jun 19;15:1402145. doi: 10.3389/fneur.2024.1402145. eCollection 2024.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
SwingIT-stroke
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.