Gut Microbiota, Mitochondrial Function and Metabolic Health in Obesity

NCT ID: NCT06279780

Last Updated: 2025-02-27

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

109 participants

Study Classification

INTERVENTIONAL

Study Start Date

2019-01-01

Study Completion Date

2024-08-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

It has been suggested that individuals with the condition known as metabolically healthy obesity (MHO) may not have the same increased risk of developing metabolic abnormalities as their non-metabolically healthy counterparts. In addition, to date, the identification of metabolic biomarkers and microbiota underlying the MHO state is limited. In this study, our goal is to provide insight into the underlying metabolic pathways affected by obesity. To achieve this, we will compare the metabolic profile, inflammatory parameters and mitochondrial function, as well as metabolomic analysis and differential expression of microbiota in obese patients categorized as metabolically healthy vs. non healthy. In parallel, the effect of a hypocaloric diet on obese subjects' metabolism and microbiota will be assessed to approve their use in the treatment of said disorder. Specifically, we propose an observational, clinical-basic, comparative and interventional study in a population of 80 obese (BMI\>35 kg/m2) patients clustered in two groups according to the presence or absence of altered metabolism (altered fasting glycemia, hypertension, atherogenic dyslipidemia). Anthropometric and clinical variables and biological samples (serum, plasma, peripheral blood cells and feces) will be collected for the determination of biochemical parameters (glucose, lipid and hormonal profile by enzymatic techniques) and protein-based peripheral biomarkers of mitochondrial function \[total and mitochondrial reactive oxygen species (ROS) production, mitochondrial membrane potential, glutathione levels by static cytometry\], markers of mitochondrial dynamics \[Mitofusin 1 (MFN1), Mitofusin 2 (MFN2), Mitochondrial fision protein 1 (FIS1) and Dynamin-related protein 1 (DRP1) by RT-PCR and Western Blot\], markers of inflammation \[Interleukin 6 (IL6), Tumoral necrosis factor alpha (TNFα), IL1b, adiponectin, resistin, plasminogen activator inhibitor 1 (PAI-1), Monocyte chemoattractant protein-1 (MCP-1), caspase 1 and NLRP3 by Western Blot and technology XMAP), metabolomic assay (NMR spectroscopy and PLS-DA), as well as gut microbiota content and diversity (16S rRNA, MiSeq sequencing). Finally, we will evaluate the effect of a dietary weight loss intervention on these biomarkers.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Obesity Adult Onset

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

Primary Study Purpose

TREATMENT

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Very low-calorie diet Intervention

Group Type EXPERIMENTAL

very low-calorie diet

Intervention Type DIETARY_SUPPLEMENT

Subjects undergo two cycles of a very-low-calorie diet (VLCD) for 6 weeks each, alternating with a hypocaloric diet (12 weeks). The dietetic intervention consists of a VLCD using a liquid formula (Optisource Plus, Nestlé S.A., Vevey, Switzerland), providing 52.8 g protein, 75.0 g carbohydrates, 13.5 g fat, 11.4 g fiber, and essential vitamins and minerals based on Recommended Dietary Allowances (RDA). This formula supplies 2738 kJ/day (654 kcal/day), replacing the participants' three daily meals. Following this and before the second VLCD cycle, a dietician performs an individualized nutritional assessment to calculate the resting energy expenditure, and personalized hypocaloric diets were prepared, reducing 500 kcal for each individual on their daily caloric expenditure, maintaining the recommended intake of each of the macronutrients (55% carbohydrates, 30% fats and 15% proteins) for 12-weeks.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

very low-calorie diet

Subjects undergo two cycles of a very-low-calorie diet (VLCD) for 6 weeks each, alternating with a hypocaloric diet (12 weeks). The dietetic intervention consists of a VLCD using a liquid formula (Optisource Plus, Nestlé S.A., Vevey, Switzerland), providing 52.8 g protein, 75.0 g carbohydrates, 13.5 g fat, 11.4 g fiber, and essential vitamins and minerals based on Recommended Dietary Allowances (RDA). This formula supplies 2738 kJ/day (654 kcal/day), replacing the participants' three daily meals. Following this and before the second VLCD cycle, a dietician performs an individualized nutritional assessment to calculate the resting energy expenditure, and personalized hypocaloric diets were prepared, reducing 500 kcal for each individual on their daily caloric expenditure, maintaining the recommended intake of each of the macronutrients (55% carbohydrates, 30% fats and 15% proteins) for 12-weeks.

Intervention Type DIETARY_SUPPLEMENT

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

VLCD

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Patients with BMI≥30kg/m2, with at least 5 years of diagnosed obesity evolution.
* Patients have had stable body weight (±2 kg) during the 3 months prior to the study.

Exclusion Criteria

* All patients with acute or chronic inflammatory diseases, neoplasic disease, secondary causes of obesity (uncontrolled hypothyroidism, Cushing's syndrome), and established liver and kidney failure (according to transaminase levels ±2 SD of the mean and estimated glomerular filtration rate using the CKD-EPI formula \>60) will be excluded.
Minimum Eligible Age

18 Years

Maximum Eligible Age

60 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Instituto de Salud Carlos III

OTHER_GOV

Sponsor Role collaborator

Celia Bañuls

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Celia Bañuls

Principal Investigator

Responsibility Role SPONSOR_INVESTIGATOR

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

FISABIO

Valencia, Valencia, Spain

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Spain

References

Explore related publications, articles, or registry entries linked to this study.

Smith KB, Smith MS. Obesity Statistics. Prim Care. 2016 Mar;43(1):121-35, ix. doi: 10.1016/j.pop.2015.10.001. Epub 2016 Jan 12.

Reference Type BACKGROUND
PMID: 26896205 (View on PubMed)

Lagerros YT, Rossner S. Obesity management: what brings success? Therap Adv Gastroenterol. 2013 Jan;6(1):77-88. doi: 10.1177/1756283X12459413.

Reference Type BACKGROUND
PMID: 23320052 (View on PubMed)

Gomez-Ambrosi J, Silva C, Galofre JC, Escalada J, Santos S, Millan D, Vila N, Ibanez P, Gil MJ, Valenti V, Rotellar F, Ramirez B, Salvador J, Fruhbeck G. Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int J Obes (Lond). 2012 Feb;36(2):286-94. doi: 10.1038/ijo.2011.100. Epub 2011 May 17.

Reference Type BACKGROUND
PMID: 21587201 (View on PubMed)

Tchernof A, Despres JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013 Jan;93(1):359-404. doi: 10.1152/physrev.00033.2011.

Reference Type BACKGROUND
PMID: 23303913 (View on PubMed)

Stefan N, Haring HU, Hu FB, Schulze MB. Metabolically healthy obesity: epidemiology, mechanisms, and clinical implications. Lancet Diabetes Endocrinol. 2013 Oct;1(2):152-62. doi: 10.1016/S2213-8587(13)70062-7. Epub 2013 Aug 30.

Reference Type BACKGROUND
PMID: 24622321 (View on PubMed)

Phillips CM. Metabolically healthy obesity across the life course: epidemiology, determinants, and implications. Ann N Y Acad Sci. 2017 Mar;1391(1):85-100. doi: 10.1111/nyas.13230. Epub 2016 Oct 10.

Reference Type BACKGROUND
PMID: 27723940 (View on PubMed)

Primeau V, Coderre L, Karelis AD, Brochu M, Lavoie ME, Messier V, Sladek R, Rabasa-Lhoret R. Characterizing the profile of obese patients who are metabolically healthy. Int J Obes (Lond). 2011 Jul;35(7):971-81. doi: 10.1038/ijo.2010.216. Epub 2010 Oct 26.

Reference Type BACKGROUND
PMID: 20975726 (View on PubMed)

Naukkarinen J, Heinonen S, Hakkarainen A, Lundbom J, Vuolteenaho K, Saarinen L, Hautaniemi S, Rodriguez A, Fruhbeck G, Pajunen P, Hyotylainen T, Oresic M, Moilanen E, Suomalainen A, Lundbom N, Kaprio J, Rissanen A, Pietilainen KH. Characterising metabolically healthy obesity in weight-discordant monozygotic twins. Diabetologia. 2014 Jan;57(1):167-76. doi: 10.1007/s00125-013-3066-y. Epub 2013 Oct 8.

Reference Type BACKGROUND
PMID: 24100782 (View on PubMed)

Plourde G, Karelis AD. Current issues in the identification and treatment of metabolically healthy but obese individuals. Nutr Metab Cardiovasc Dis. 2014 May;24(5):455-9. doi: 10.1016/j.numecd.2013.12.002. Epub 2014 Jan 12.

Reference Type BACKGROUND
PMID: 24529490 (View on PubMed)

Velho S, Paccaud F, Waeber G, Vollenweider P, Marques-Vidal P. Metabolically healthy obesity: different prevalences using different criteria. Eur J Clin Nutr. 2010 Oct;64(10):1043-51. doi: 10.1038/ejcn.2010.114. Epub 2010 Jul 14.

Reference Type BACKGROUND
PMID: 20628408 (View on PubMed)

Fruhbeck G, Gomez-Ambrosi J. Rationale for the existence of additional adipostatic hormones. FASEB J. 2001 Sep;15(11):1996-2006. doi: 10.1096/fj.00-0829hyp.

Reference Type BACKGROUND
PMID: 11532980 (View on PubMed)

Mangge H, Zelzer S, Puerstner P, Schnedl WJ, Reeves G, Postolache TT, Weghuber D. Uric acid best predicts metabolically unhealthy obesity with increased cardiovascular risk in youth and adults. Obesity (Silver Spring). 2013 Jan;21(1):E71-7. doi: 10.1002/oby.20061. Epub 2013 Jan 29.

Reference Type BACKGROUND
PMID: 23401248 (View on PubMed)

Messier V, Karelis AD, Robillard ME, Bellefeuille P, Brochu M, Lavoie JM, Rabasa-Lhoret R. Metabolically healthy but obese individuals: relationship with hepatic enzymes. Metabolism. 2010 Jan;59(1):20-4. doi: 10.1016/j.metabol.2009.06.020. Epub 2009 Aug 25.

Reference Type BACKGROUND
PMID: 19709695 (View on PubMed)

Gaye A, Doumatey AP, Davis SK, Rotimi CN, Gibbons GH. Whole-genome transcriptomic insights into protective molecular mechanisms in metabolically healthy obese African Americans. NPJ Genom Med. 2018 Jan 29;3:4. doi: 10.1038/s41525-018-0043-x. eCollection 2018.

Reference Type BACKGROUND
PMID: 29387454 (View on PubMed)

Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006 Dec 14;444(7121):860-7. doi: 10.1038/nature05485.

Reference Type BACKGROUND
PMID: 17167474 (View on PubMed)

Gregor MF, Hotamisligil GS. Thematic review series: Adipocyte Biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease. J Lipid Res. 2007 Sep;48(9):1905-14. doi: 10.1194/jlr.R700007-JLR200. Epub 2007 May 9.

Reference Type BACKGROUND
PMID: 17699733 (View on PubMed)

Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 2010 Mar 19;140(6):900-17. doi: 10.1016/j.cell.2010.02.034.

Reference Type BACKGROUND
PMID: 20303879 (View on PubMed)

Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72:219-46. doi: 10.1146/annurev-physiol-021909-135846.

Reference Type BACKGROUND
PMID: 20148674 (View on PubMed)

Howard JK, Flier JS. Attenuation of leptin and insulin signaling by SOCS proteins. Trends Endocrinol Metab. 2006 Nov;17(9):365-71. doi: 10.1016/j.tem.2006.09.007. Epub 2006 Sep 28.

Reference Type BACKGROUND
PMID: 17010638 (View on PubMed)

Lebrun P, Van Obberghen E. SOCS proteins causing trouble in insulin action. Acta Physiol (Oxf). 2008 Jan;192(1):29-36. doi: 10.1111/j.1748-1716.2007.01782.x.

Reference Type BACKGROUND
PMID: 18171427 (View on PubMed)

Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005 Feb;11(2):183-90. doi: 10.1038/nm1166. Epub 2005 Jan 30.

Reference Type BACKGROUND
PMID: 15685173 (View on PubMed)

Kogelman LJ, Fu J, Franke L, Greve JW, Hofker M, Rensen SS, Kadarmideen HN. Inter-Tissue Gene Co-Expression Networks between Metabolically Healthy and Unhealthy Obese Individuals. PLoS One. 2016 Dec 1;11(12):e0167519. doi: 10.1371/journal.pone.0167519. eCollection 2016.

Reference Type BACKGROUND
PMID: 27907186 (View on PubMed)

Esser N, L'homme L, De Roover A, Kohnen L, Scheen AJ, Moutschen M, Piette J, Legrand-Poels S, Paquot N. Obesity phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue. Diabetologia. 2013 Nov;56(11):2487-97. doi: 10.1007/s00125-013-3023-9. Epub 2013 Sep 7.

Reference Type BACKGROUND
PMID: 24013717 (View on PubMed)

Zorzano A, Claret M. Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction. Front Aging Neurosci. 2015 Jun 10;7:101. doi: 10.3389/fnagi.2015.00101. eCollection 2015.

Reference Type BACKGROUND
PMID: 26113818 (View on PubMed)

Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol. 2010 Dec;11(12):872-84. doi: 10.1038/nrm3013.

Reference Type BACKGROUND
PMID: 21102612 (View on PubMed)

Armitage EG, Rupérez FJ, Barbas C. Metabolomics of diet-related diseases using mass spectrometry. Trends Analyt Chem. 2013; 52: 61-73.

Reference Type BACKGROUND

Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy WS Jr, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009 Apr;9(4):311-26. doi: 10.1016/j.cmet.2009.02.002.

Reference Type BACKGROUND
PMID: 19356713 (View on PubMed)

Fiehn O, Garvey WT, Newman JW, Lok KH, Hoppel CL, Adams SH. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS One. 2010 Dec 10;5(12):e15234. doi: 10.1371/journal.pone.0015234.

Reference Type BACKGROUND
PMID: 21170321 (View on PubMed)

Suhre K, Meisinger C, Doring A, Altmaier E, Belcredi P, Gieger C, Chang D, Milburn MV, Gall WE, Weinberger KM, Mewes HW, Hrabe de Angelis M, Wichmann HE, Kronenberg F, Adamski J, Illig T. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS One. 2010 Nov 11;5(11):e13953. doi: 10.1371/journal.pone.0013953.

Reference Type BACKGROUND
PMID: 21085649 (View on PubMed)

Wiklund PK, Pekkala S, Autio R, Munukka E, Xu L, Saltevo J, Cheng S, Kujala UM, Alen M, Cheng S. Serum metabolic profiles in overweight and obese women with and without metabolic syndrome. Diabetol Metab Syndr. 2014 Mar 20;6(1):40. doi: 10.1186/1758-5996-6-40.

Reference Type BACKGROUND
PMID: 24650495 (View on PubMed)

Chen HH, Tseng YJ, Wang SY, Tsai YS, Chang CS, Kuo TC, Yao WJ, Shieh CC, Wu CH, Kuo PH. The metabolome profiling and pathway analysis in metabolic healthy and abnormal obesity. Int J Obes (Lond). 2015 Aug;39(8):1241-8. doi: 10.1038/ijo.2015.65. Epub 2015 Apr 24.

Reference Type BACKGROUND
PMID: 25907313 (View on PubMed)

Gao X, Zhang W, Wang Y, Pedram P, Cahill F, Zhai G, Randell E, Gulliver W, Sun G. Serum metabolic biomarkers distinguish metabolically healthy peripherally obese from unhealthy centrally obese individuals. Nutr Metab (Lond). 2016 May 12;13:33. doi: 10.1186/s12986-016-0095-9. eCollection 2016.

Reference Type BACKGROUND
PMID: 27175209 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

PI18/00932

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Gut Microbiome and Obesity
NCT04451148 UNKNOWN