Gut Microbiota, Mitochondrial Function and Metabolic Health in Obesity
NCT ID: NCT06279780
Last Updated: 2025-02-27
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
109 participants
INTERVENTIONAL
2019-01-01
2024-08-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Microbiota in Dietary Approach to Obesity
NCT04453150
Natural Course of Initially Metabolic Healthy Obese Individuals (Healthy Obesity)?
NCT06799897
Study of the Intestinal Microbiota During a Real Life Dietary Intervention in Subjects With Overweight or Obesity
NCT04822948
Healthy vs Unhealthy Obesity: Mehanistic Insights and Effects of Time-Restricted Eating
NCT05136313
Energy Metabolism Profiles Over Weight-loss and Eating Responses
NCT05785221
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Very low-calorie diet Intervention
very low-calorie diet
Subjects undergo two cycles of a very-low-calorie diet (VLCD) for 6 weeks each, alternating with a hypocaloric diet (12 weeks). The dietetic intervention consists of a VLCD using a liquid formula (Optisource Plus, Nestlé S.A., Vevey, Switzerland), providing 52.8 g protein, 75.0 g carbohydrates, 13.5 g fat, 11.4 g fiber, and essential vitamins and minerals based on Recommended Dietary Allowances (RDA). This formula supplies 2738 kJ/day (654 kcal/day), replacing the participants' three daily meals. Following this and before the second VLCD cycle, a dietician performs an individualized nutritional assessment to calculate the resting energy expenditure, and personalized hypocaloric diets were prepared, reducing 500 kcal for each individual on their daily caloric expenditure, maintaining the recommended intake of each of the macronutrients (55% carbohydrates, 30% fats and 15% proteins) for 12-weeks.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
very low-calorie diet
Subjects undergo two cycles of a very-low-calorie diet (VLCD) for 6 weeks each, alternating with a hypocaloric diet (12 weeks). The dietetic intervention consists of a VLCD using a liquid formula (Optisource Plus, Nestlé S.A., Vevey, Switzerland), providing 52.8 g protein, 75.0 g carbohydrates, 13.5 g fat, 11.4 g fiber, and essential vitamins and minerals based on Recommended Dietary Allowances (RDA). This formula supplies 2738 kJ/day (654 kcal/day), replacing the participants' three daily meals. Following this and before the second VLCD cycle, a dietician performs an individualized nutritional assessment to calculate the resting energy expenditure, and personalized hypocaloric diets were prepared, reducing 500 kcal for each individual on their daily caloric expenditure, maintaining the recommended intake of each of the macronutrients (55% carbohydrates, 30% fats and 15% proteins) for 12-weeks.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Patients have had stable body weight (±2 kg) during the 3 months prior to the study.
Exclusion Criteria
18 Years
60 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Instituto de Salud Carlos III
OTHER_GOV
Celia Bañuls
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Celia Bañuls
Principal Investigator
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
FISABIO
Valencia, Valencia, Spain
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Smith KB, Smith MS. Obesity Statistics. Prim Care. 2016 Mar;43(1):121-35, ix. doi: 10.1016/j.pop.2015.10.001. Epub 2016 Jan 12.
Lagerros YT, Rossner S. Obesity management: what brings success? Therap Adv Gastroenterol. 2013 Jan;6(1):77-88. doi: 10.1177/1756283X12459413.
Gomez-Ambrosi J, Silva C, Galofre JC, Escalada J, Santos S, Millan D, Vila N, Ibanez P, Gil MJ, Valenti V, Rotellar F, Ramirez B, Salvador J, Fruhbeck G. Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int J Obes (Lond). 2012 Feb;36(2):286-94. doi: 10.1038/ijo.2011.100. Epub 2011 May 17.
Tchernof A, Despres JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013 Jan;93(1):359-404. doi: 10.1152/physrev.00033.2011.
Stefan N, Haring HU, Hu FB, Schulze MB. Metabolically healthy obesity: epidemiology, mechanisms, and clinical implications. Lancet Diabetes Endocrinol. 2013 Oct;1(2):152-62. doi: 10.1016/S2213-8587(13)70062-7. Epub 2013 Aug 30.
Phillips CM. Metabolically healthy obesity across the life course: epidemiology, determinants, and implications. Ann N Y Acad Sci. 2017 Mar;1391(1):85-100. doi: 10.1111/nyas.13230. Epub 2016 Oct 10.
Primeau V, Coderre L, Karelis AD, Brochu M, Lavoie ME, Messier V, Sladek R, Rabasa-Lhoret R. Characterizing the profile of obese patients who are metabolically healthy. Int J Obes (Lond). 2011 Jul;35(7):971-81. doi: 10.1038/ijo.2010.216. Epub 2010 Oct 26.
Naukkarinen J, Heinonen S, Hakkarainen A, Lundbom J, Vuolteenaho K, Saarinen L, Hautaniemi S, Rodriguez A, Fruhbeck G, Pajunen P, Hyotylainen T, Oresic M, Moilanen E, Suomalainen A, Lundbom N, Kaprio J, Rissanen A, Pietilainen KH. Characterising metabolically healthy obesity in weight-discordant monozygotic twins. Diabetologia. 2014 Jan;57(1):167-76. doi: 10.1007/s00125-013-3066-y. Epub 2013 Oct 8.
Plourde G, Karelis AD. Current issues in the identification and treatment of metabolically healthy but obese individuals. Nutr Metab Cardiovasc Dis. 2014 May;24(5):455-9. doi: 10.1016/j.numecd.2013.12.002. Epub 2014 Jan 12.
Velho S, Paccaud F, Waeber G, Vollenweider P, Marques-Vidal P. Metabolically healthy obesity: different prevalences using different criteria. Eur J Clin Nutr. 2010 Oct;64(10):1043-51. doi: 10.1038/ejcn.2010.114. Epub 2010 Jul 14.
Fruhbeck G, Gomez-Ambrosi J. Rationale for the existence of additional adipostatic hormones. FASEB J. 2001 Sep;15(11):1996-2006. doi: 10.1096/fj.00-0829hyp.
Mangge H, Zelzer S, Puerstner P, Schnedl WJ, Reeves G, Postolache TT, Weghuber D. Uric acid best predicts metabolically unhealthy obesity with increased cardiovascular risk in youth and adults. Obesity (Silver Spring). 2013 Jan;21(1):E71-7. doi: 10.1002/oby.20061. Epub 2013 Jan 29.
Messier V, Karelis AD, Robillard ME, Bellefeuille P, Brochu M, Lavoie JM, Rabasa-Lhoret R. Metabolically healthy but obese individuals: relationship with hepatic enzymes. Metabolism. 2010 Jan;59(1):20-4. doi: 10.1016/j.metabol.2009.06.020. Epub 2009 Aug 25.
Gaye A, Doumatey AP, Davis SK, Rotimi CN, Gibbons GH. Whole-genome transcriptomic insights into protective molecular mechanisms in metabolically healthy obese African Americans. NPJ Genom Med. 2018 Jan 29;3:4. doi: 10.1038/s41525-018-0043-x. eCollection 2018.
Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006 Dec 14;444(7121):860-7. doi: 10.1038/nature05485.
Gregor MF, Hotamisligil GS. Thematic review series: Adipocyte Biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease. J Lipid Res. 2007 Sep;48(9):1905-14. doi: 10.1194/jlr.R700007-JLR200. Epub 2007 May 9.
Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 2010 Mar 19;140(6):900-17. doi: 10.1016/j.cell.2010.02.034.
Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72:219-46. doi: 10.1146/annurev-physiol-021909-135846.
Howard JK, Flier JS. Attenuation of leptin and insulin signaling by SOCS proteins. Trends Endocrinol Metab. 2006 Nov;17(9):365-71. doi: 10.1016/j.tem.2006.09.007. Epub 2006 Sep 28.
Lebrun P, Van Obberghen E. SOCS proteins causing trouble in insulin action. Acta Physiol (Oxf). 2008 Jan;192(1):29-36. doi: 10.1111/j.1748-1716.2007.01782.x.
Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005 Feb;11(2):183-90. doi: 10.1038/nm1166. Epub 2005 Jan 30.
Kogelman LJ, Fu J, Franke L, Greve JW, Hofker M, Rensen SS, Kadarmideen HN. Inter-Tissue Gene Co-Expression Networks between Metabolically Healthy and Unhealthy Obese Individuals. PLoS One. 2016 Dec 1;11(12):e0167519. doi: 10.1371/journal.pone.0167519. eCollection 2016.
Esser N, L'homme L, De Roover A, Kohnen L, Scheen AJ, Moutschen M, Piette J, Legrand-Poels S, Paquot N. Obesity phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue. Diabetologia. 2013 Nov;56(11):2487-97. doi: 10.1007/s00125-013-3023-9. Epub 2013 Sep 7.
Zorzano A, Claret M. Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction. Front Aging Neurosci. 2015 Jun 10;7:101. doi: 10.3389/fnagi.2015.00101. eCollection 2015.
Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol. 2010 Dec;11(12):872-84. doi: 10.1038/nrm3013.
Armitage EG, Rupérez FJ, Barbas C. Metabolomics of diet-related diseases using mass spectrometry. Trends Analyt Chem. 2013; 52: 61-73.
Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy WS Jr, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009 Apr;9(4):311-26. doi: 10.1016/j.cmet.2009.02.002.
Fiehn O, Garvey WT, Newman JW, Lok KH, Hoppel CL, Adams SH. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women. PLoS One. 2010 Dec 10;5(12):e15234. doi: 10.1371/journal.pone.0015234.
Suhre K, Meisinger C, Doring A, Altmaier E, Belcredi P, Gieger C, Chang D, Milburn MV, Gall WE, Weinberger KM, Mewes HW, Hrabe de Angelis M, Wichmann HE, Kronenberg F, Adamski J, Illig T. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS One. 2010 Nov 11;5(11):e13953. doi: 10.1371/journal.pone.0013953.
Wiklund PK, Pekkala S, Autio R, Munukka E, Xu L, Saltevo J, Cheng S, Kujala UM, Alen M, Cheng S. Serum metabolic profiles in overweight and obese women with and without metabolic syndrome. Diabetol Metab Syndr. 2014 Mar 20;6(1):40. doi: 10.1186/1758-5996-6-40.
Chen HH, Tseng YJ, Wang SY, Tsai YS, Chang CS, Kuo TC, Yao WJ, Shieh CC, Wu CH, Kuo PH. The metabolome profiling and pathway analysis in metabolic healthy and abnormal obesity. Int J Obes (Lond). 2015 Aug;39(8):1241-8. doi: 10.1038/ijo.2015.65. Epub 2015 Apr 24.
Gao X, Zhang W, Wang Y, Pedram P, Cahill F, Zhai G, Randell E, Gulliver W, Sun G. Serum metabolic biomarkers distinguish metabolically healthy peripherally obese from unhealthy centrally obese individuals. Nutr Metab (Lond). 2016 May 12;13:33. doi: 10.1186/s12986-016-0095-9. eCollection 2016.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
PI18/00932
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.