Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
14 participants
INTERVENTIONAL
2016-04-01
2016-09-15
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
1. The occurrence of obesity is due to the derange,ent of mitochondrial energy metabolism ;
2. The unbalance is therapeutically modified through physical training ;
3. Obesity courses with the break-down in energy metabolism mitochondrial disease associated with systemic inflammatory characteristics that can be corrected through a combined long-term physical training program.
This study have as objective : to analyse changes in mitochondrial function, inflammatory profile, oxidative stress and energy metabolism caused by concurrent physical training in obese women.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Anthropometric, Metabolic, Cardiovascular and Symptomatic Profile in Postmenopausal Women
NCT01745042
Effects of Liposuction and Exercise Training on Metabolism, Lipid Profile and Adiposity in Women
NCT01174485
Cryolipolysis on Localized Adiposity
NCT03160976
Human Mitochondrial Stress-driven Obesity Resistance
NCT06080568
Analysis of Functional Performance in Subjects With Obesity During Motor Tasks.
NCT05759650
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Body composition by deuterium oxide; Metabolic rate of resting and oxidation of substrates by indirect calorimetry; Proinflammatory cytokines Anti-inflammatory cytokines Oxidative Stress: Malondialdehyde, Superoxide Dismutase, Glutathione-Peroxidase; Fatty acids: ceramide and palmitate; Mitochondrial respiration and citrate synthase enzyme; Quantify and qualify: mitochondrial number, endoplasmic reticulum structure, adipose cell size; Gene expression, quantify by microscopy and analyze the protein by western blot.
The study began with 20 women, however, there was withdrawal of 6, ending with 14 women.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Physical Training
There was concurrent physical training intervention: strength and aerobic exercises in the same session.
Duration: 2 weeks of adaptation and learning to exercise, 8 weeks of physical training.
Frequency: 3 times per week Duration: 55 minutes each session. Intensity: 75 to 90% of maximum heart rate.
Physical Training
Intervention with concurrent physical training: strength and aerobic exercises in the same session.
Duration: 2 weeks of adaptation to physical exercise, 8 weeks of training. Frequency: 3 times a week. Time: 55 minutes each session. Intensity: 75 to 90% of maximum heart rate.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Physical Training
Intervention with concurrent physical training: strength and aerobic exercises in the same session.
Duration: 2 weeks of adaptation to physical exercise, 8 weeks of training. Frequency: 3 times a week. Time: 55 minutes each session. Intensity: 75 to 90% of maximum heart rate.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
20 Years
40 Years
FEMALE
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Sao Paulo
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Julio Sergio Marchini
Principal Investigator
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Camila Fernanda Cunha Brandão
Ribeirão Preto, São Paulo, Brazil
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
BROWN, L.E.; WEIR, J.P.; ASEP procedures recommendation i: accurate assessment of muscular strength and power, Journal of Exercise Physiology, v. 4, n. 3, p. 1-21, 2001.
Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, Gibala MJ. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol. 2008 Jan 1;586(1):151-60. doi: 10.1113/jphysiol.2007.142109. Epub 2007 Nov 8.
Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156-9. doi: 10.1006/abio.1987.9999.
Colégio Americano de Medicina Esportiva, CAME. Guia para Teste de Esforço e Prescrição de Exercício. 3º Edição, Medsi, Rio de janeiro, RJ, p.25, 1987.
Crump C, Sundquist J, Winkleby MA, Sundquist K. Interactive effects of obesity and physical fitness on risk of ischemic heart disease. Int J Obes (Lond). 2017 Feb;41(2):255-261. doi: 10.1038/ijo.2016.209. Epub 2016 Nov 21.
Curtis JM, Grimsrud PA, Wright WS, Xu X, Foncea RE, Graham DW, Brestoff JR, Wiczer BM, Ilkayeva O, Cianflone K, Muoio DE, Arriaga EA, Bernlohr DA. Downregulation of adipose glutathione S-transferase A4 leads to increased protein carbonylation, oxidative stress, and mitochondrial dysfunction. Diabetes. 2010 May;59(5):1132-42. doi: 10.2337/db09-1105. Epub 2010 Feb 11.
Daussin FN, Zoll J, Dufour SP, Ponsot E, Lonsdorfer-Wolf E, Doutreleau S, Mettauer B, Piquard F, Geny B, Richard R. Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. Am J Physiol Regul Integr Comp Physiol. 2008 Jul;295(1):R264-72. doi: 10.1152/ajpregu.00875.2007. Epub 2008 Apr 16.
EIGENTLER, A.; DRAXL, A.; et al. Laboratory Protocol: Citrate synthase a mitochondrial marker enzyme. Mitochondrial Physiology Network, v. 17.04, n. 3, p. 1-11, 2015.
Fernstrom M, Bakkman L, Loogna P, Rooyackers O, Svensson M, Jakobsson T, Brandt L, Lagerros YT. Improved Muscle Mitochondrial Capacity Following Gastric Bypass Surgery in Obese Subjects. Obes Surg. 2016 Jul;26(7):1391-7. doi: 10.1007/s11695-015-1932-z.
Ferreira FC, Bertucci DR, Barbosa MR, Nunes JE, Botero JP, Rodrigues MF, Shiguemoto GE, Santoro V, Verzola AC, Nonaka RO, Verzola RM, Baldissera V, Perez SE. Circuit resistance training in women with normal weight obesity syndrome: body composition, cardiometabolic and echocardiographic parameters, and cardiovascular and skeletal muscle fitness. J Sports Med Phys Fitness. 2017 Jul-Aug;57(7-8):1033-1044. doi: 10.23736/S0022-4707.16.06391-X. Epub 2016 Jul 6.
FETT, C.A.; FETT, W.C.R.; MARCHINI, J.S. Fitness Level of Overweight/Obese Women After 08 Weeks of Aerobic or Mixed Metabolism Exercises. Revista Brasileira de Cineantropometria & Desempenho Humano, v. 11, p. 261-266, 2009.
Foster C. Monitoring training in athletes with reference to overtraining syndrome. Med Sci Sports Exerc. 1998 Jul;30(7):1164-8. doi: 10.1097/00005768-199807000-00023.
Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol. 1983 Aug;55(2):628-34. doi: 10.1152/jappl.1983.55.2.628.
Grimble GK, West MF, Acuti AB, Rees RG, Hunjan MK, Webster JD, Frost PG, Silk DB. Assessment of an automated chemiluminescence nitrogen analyzer for routine use in clinical nutrition. JPEN J Parenter Enteral Nutr. 1988 Jan-Feb;12(1):100-6. doi: 10.1177/0148607188012001100.
Heilbronn LK, Gan SK, Turner N, Campbell LV, Chisholm DJ. Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects. J Clin Endocrinol Metab. 2007 Apr;92(4):1467-73. doi: 10.1210/jc.2006-2210. Epub 2007 Jan 23.
Koh EH, Park JY, Park HS, Jeon MJ, Ryu JW, Kim M, Kim SY, Kim MS, Kim SW, Park IS, Youn JH, Lee KU. Essential role of mitochondrial function in adiponectin synthesis in adipocytes. Diabetes. 2007 Dec;56(12):2973-81. doi: 10.2337/db07-0510. Epub 2007 Sep 7.
Kong Z, Sun S, Liu M, Shi Q. Short-Term High-Intensity Interval Training on Body Composition and Blood Glucose in Overweight and Obese Young Women. J Diabetes Res. 2016;2016:4073618. doi: 10.1155/2016/4073618. Epub 2016 Sep 28.
Kraunsoe R, Boushel R, Hansen CN, Schjerling P, Qvortrup K, Stockel M, Mikines KJ, Dela F. Mitochondrial respiration in subcutaneous and visceral adipose tissue from patients with morbid obesity. J Physiol. 2010 Jun 15;588(Pt 12):2023-32. doi: 10.1113/jphysiol.2009.184754. Epub 2010 Apr 26.
Lepage G, Roy CC. Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J Lipid Res. 1984 Dec 1;25(12):1391-6.
Medbo JI, Mamen A, Holt Olsen O, Evertsen F. Examination of four different instruments for measuring blood lactate concentration. Scand J Clin Lab Invest. 2000 Aug;60(5):367-80. doi: 10.1080/003655100750019279.
Perry CG, Lally J, Holloway GP, Heigenhauser GJ, Bonen A, Spriet LL. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol. 2010 Dec 1;588(Pt 23):4795-810. doi: 10.1113/jphysiol.2010.199448. Epub 2010 Oct 4.
Pfrimer K, Moriguti JC, Lima NK, Marchini JS, Ferriolli E. Bioelectrical impedance with different equations versus deuterium oxide dilution method for the inference of body composition in healthy older persons. J Nutr Health Aging. 2012 Feb;16(2):124-7. doi: 10.1007/s12603-011-0137-y.
POLLOCK, M.L.; WILMORE, J.H.; FOX III, S.M. Exercícios na Saúde e na Doença - Avaliação e prescrição para prevenção e reabilitação. Rio de Janeiro: 1986.
Singh SJ, Morgan MD, Scott S, Walters D, Hardman AE. Development of a shuttle walking test of disability in patients with chronic airways obstruction. Thorax. 1992 Dec;47(12):1019-24. doi: 10.1136/thx.47.12.1019.
Tan S, Wang J, Cao L, Guo Z, Wang Y. Positive effect of exercise training at maximal fat oxidation intensity on body composition and lipid metabolism in overweight middle-aged women. Clin Physiol Funct Imaging. 2016 May;36(3):225-30. doi: 10.1111/cpf.12217. Epub 2014 Nov 19.
WEIR JB. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol. 1949 Aug;109(1-2):1-9. doi: 10.1113/jphysiol.1949.sp004363. No abstract available.
Yin X, Lanza IR, Swain JM, Sarr MG, Nair KS, Jensen MD. Adipocyte mitochondrial function is reduced in human obesity independent of fat cell size. J Clin Endocrinol Metab. 2014 Feb;99(2):E209-16. doi: 10.1210/jc.2013-3042. Epub 2013 Nov 25.
Brandao CFC, Nonino CB, de Carvalho FG, Nicoletti CF, Noronha NY, San Martin R, de Freitas EC, Junqueira-Franco MVM, Marchini JS. The effects of short-term combined exercise training on telomere length in obese women: a prospective, interventional study. Sports Med Open. 2020 Jan 16;6(1):5. doi: 10.1186/s40798-020-0235-7.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
Process HCRP: 1.387.040/2016
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.