Prospective Clinical Validation of Next Generation Sequencing (NGS) and Patient-Derived Tumor Organoids (PDO) Guided Therapy in Patients with Advanced/ Inoperable Solid Tumors
NCT ID: NCT06077591
Last Updated: 2025-01-27
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
PHASE3
40 participants
INTERVENTIONAL
2024-10-18
2028-02-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Molecular Study and Precision Medicine for Colorectal Cancer
NCT05883683
Delayed Systemic Therapy Following Destructive Local Treatment of Pulmonary Oligometastases After No Evidence of Disease (NED) in Colorectal Cancer.
NCT06778382
PRecision Oncology CUhk pRogrammE (PRO-CURE)
NCT04724070
The Clinical Efficacy of Drug Sensitive Neoadjuvant Chemotherapy Based on Organoid Versus Traditional Neoadjuvant Chemotherapy in Advanced Rectal Cancer
NCT05352165
The Culture of Advanced/Recurrent/Metastatic Colorectal Cancer Organoids and Drug Screening
NCT05304741
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Tumor assessments will be performed at baseline, every 8 weeks. Investigators report all adverse events and serious adverse events (SAE) based on the definitions in NCI CTCAE. Investigators report all SAEs to the Joint NTEC-CUHK CREC within 24 hours of their occurrence. Senior physicians at CREC adjudicated all SAEs.
Investigators aim to determine clinical efficacy of NGS/ PDO drug screen guided treatment in patients with inoperable/ advanced solid tumors refractory to conventional chemotherapy. Investigators correlate PDO drug response ex vivo to clinical response in these patients. Our hypothesis is that WES and PDO drug screen can accurately identify candidate drugs that will reduce tumor size and confer benefits in these patients.
Investigators assume a treatment response with standard treatment be around 10%. A PDO and NGS guided treatment will likely improve the response rate to about 30% or more. In the first stage, 10 patients will be accrued, If there is one or fewer response, in these 10 patients, the study will be stopped. Otherwise an additional 19 patients will be accrued for a total of 29. The null hypothesis will be rejected if 6 or more responses are observed in 29 patients. This design yields a type 1 error rate of 0.05 and a power of 80%. Investigators plan to enrol 40 or more patients over a period of 2 years, with the assumption that in about 20% of patients, PDO culture is unsuccessful.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Patient-Derived Tumor Organoids (PDO) Guided Therapy
Intervention in this study is to perform tissue sampling to patient's tumor which are then subjected to DNA extraction for whole exome sequencing, organoid culture, and drug screen. An MDT board will review the drug screen results and excluded drug choice of poor response. Then the referring oncologist has the final discretion on the choice of chemo- or targeted agent as usual.
Patient-Derived Tumor Organoids
Intervention in this study is to perform tissue sampling to patient's tumor which are then subjected to DNA extraction for whole exome sequencing, organoid culture, and drug screen. An MDT board will review the drug screen results and excluded drug choice of poor response. Then the referring oncologist has the final discretion on the choice of chemo- or targeted agent as usual.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Patient-Derived Tumor Organoids
Intervention in this study is to perform tissue sampling to patient's tumor which are then subjected to DNA extraction for whole exome sequencing, organoid culture, and drug screen. An MDT board will review the drug screen results and excluded drug choice of poor response. Then the referring oncologist has the final discretion on the choice of chemo- or targeted agent as usual.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* The disease is accessible for a biopsy (radiologic or endoscopic) or resection of a metastatic site.
* These patients are seen at a multidisciplinary tumor board meeting prior to referrals.
* aged \>18 years, able to provide written consents to trial participation,
* with an Eastern cooperative oncology group performance status of 0 or 1,
* with measurable disease in accordance with response evaluation criteria in solid tumors (RECIST) version 1.1.
* deem suitable for standard chemo-therapy; i.e. with a normal neutrophil count, hemoglobin \> 9g/dl, serum creatinine, \<1.5 x upper limit of normal, bilirubin \< 1.5 x normal, Aspartate and alanine aminotransferases (\<3 x ULN or \<5x
* those with liver metastasis) and with an ejection Fraction \>50% of normal on echocardiography.
Exclusion Criteria
18 Years
100 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Chinese University of Hong Kong
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
James Yun-wong Lau, MD
Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
James Lau
Role: PRINCIPAL_INVESTIGATOR
Prince of Wales Hospital
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Endoscopy Centre, Prince of Wales Hospital
Hong Kong, N.T., Hong Kong
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
van der Velden DL, Hoes LR, van der Wijngaart H, van Berge Henegouwen JM, van Werkhoven E, Roepman P, Schilsky RL, de Leng WWJ, Huitema ADR, Nuijen B, Nederlof PM, van Herpen CML, de Groot DJA, Devriese LA, Hoeben A, de Jonge MJA, Chalabi M, Smit EF, de Langen AJ, Mehra N, Labots M, Kapiteijn E, Sleijfer S, Cuppen E, Verheul HMW, Gelderblom H, Voest EE. The Drug Rediscovery protocol facilitates the expanded use of existing anticancer drugs. Nature. 2019 Oct;574(7776):127-131. doi: 10.1038/s41586-019-1600-x. Epub 2019 Sep 30.
Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, Van Houdt WJ, Pronk A, Van Gorp J, Siersema PD, Clevers H. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology. 2011 Nov;141(5):1762-72. doi: 10.1053/j.gastro.2011.07.050. Epub 2011 Sep 2.
van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, van Houdt W, van Gorp J, Taylor-Weiner A, Kester L, McLaren-Douglas A, Blokker J, Jaksani S, Bartfeld S, Volckman R, van Sluis P, Li VS, Seepo S, Sekhar Pedamallu C, Cibulskis K, Carter SL, McKenna A, Lawrence MS, Lichtenstein L, Stewart C, Koster J, Versteeg R, van Oudenaarden A, Saez-Rodriguez J, Vries RG, Getz G, Wessels L, Stratton MR, McDermott U, Meyerson M, Garnett MJ, Clevers H. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015 May 7;161(4):933-45. doi: 10.1016/j.cell.2015.03.053.
. De Souza, N. Organoids. Nat. Methods 15, 23 (2018).
Li M, Izpisua Belmonte JC. Organoids - Preclinical Models of Human Disease. N Engl J Med. 2019 Feb 7;380(6):569-579. doi: 10.1056/NEJMra1806175. No abstract available.
Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernandez-Mateos J, Khan K, Lampis A, Eason K, Huntingford I, Burke R, Rata M, Koh DM, Tunariu N, Collins D, Hulkki-Wilson S, Ragulan C, Spiteri I, Moorcraft SY, Chau I, Rao S, Watkins D, Fotiadis N, Bali M, Darvish-Damavandi M, Lote H, Eltahir Z, Smyth EC, Begum R, Clarke PA, Hahne JC, Dowsett M, de Bono J, Workman P, Sadanandam A, Fassan M, Sansom OJ, Eccles S, Starling N, Braconi C, Sottoriva A, Robinson SP, Cunningham D, Valeri N. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018 Feb 23;359(6378):920-926. doi: 10.1126/science.aao2774.
Ooft SN, Weeber F, Dijkstra KK, McLean CM, Kaing S, van Werkhoven E, Schipper L, Hoes L, Vis DJ, van de Haar J, Prevoo W, Snaebjornsson P, van der Velden D, Klein M, Chalabi M, Boot H, van Leerdam M, Bloemendal HJ, Beerepoot LV, Wessels L, Cuppen E, Clevers H, Voest EE. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci Transl Med. 2019 Oct 9;11(513):eaay2574. doi: 10.1126/scitranslmed.aay2574.
Yao Y, Xu X, Yang L, Zhu J, Wan J, Shen L, Xia F, Fu G, Deng Y, Pan M, Guo Q, Gao X, Li Y, Rao X, Zhou Y, Liang L, Wang Y, Zhang J, Zhang H, Li G, Zhang L, Peng J, Cai S, Hu C, Gao J, Clevers H, Zhang Z, Hua G. Patient-Derived Organoids Predict Chemoradiation Responses of Locally Advanced Rectal Cancer. Cell Stem Cell. 2020 Jan 2;26(1):17-26.e6. doi: 10.1016/j.stem.2019.10.010. Epub 2019 Nov 21.
Wensink GE, Elias SG, Mullenders J, Koopman M, Boj SF, Kranenburg OW, Roodhart JML. Patient-derived organoids as a predictive biomarker for treatment response in cancer patients. NPJ Precis Oncol. 2021 Apr 12;5(1):30. doi: 10.1038/s41698-021-00168-1.
Loong HH, Wong AM, Chan DT, Cheung MS, Chow C, Ding X, Chan AK, Johnston PA, Lau JY, Poon WS, Wong N. Patient-derived tumor organoid predicts drugs response in glioblastoma: A step forward in personalized cancer therapy? J Clin Neurosci. 2020 Aug;78:400-402. doi: 10.1016/j.jocn.2020.04.107. Epub 2020 Apr 24.
Driehuis E, Kretzschmar K, Clevers H. Establishment of patient-derived cancer organoids for drug-screening applications. Nat Protoc. 2020 Oct;15(10):3380-3409. doi: 10.1038/s41596-020-0379-4. Epub 2020 Sep 14.
Simon R. Optimal two-stage designs for phase II clinical trials. Control Clin Trials. 1989 Mar;10(1):1-10. doi: 10.1016/0197-2456(89)90015-9.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
Prince of Wales Hospital
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.