Exoskeleton Robotic Assisted Gait Training in Spastic Stroke Post Botulinum Toxin A Injection

NCT ID: NCT06070987

Last Updated: 2026-01-20

Study Results

Results available

Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.

View full results

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

30 participants

Study Classification

INTERVENTIONAL

Study Start Date

2023-08-01

Study Completion Date

2025-07-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The purpose of this project is to examine and compare the immediate and long-term effects of combined Botulinum toxin type A(BoNT-A) injection with exoskeleton Robotic assisted gait training (RABT) in patients with post-stroke stiff-knee gait.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

The aim of the study is to evaluate the effects of BoNT-A combining with overground exoskeleton robot for patients with post-stroke stiff-knee gait.

Stiff-knee gait (SKG) is a common gait pattern in patients after stroke, characterized by limited knee flexion (KF) during the swing phase of walking. Botulinum toxin A (BoNT-A) injection in rectus femoris muscle is considered the gold standard procedure to treat SKG.

Patients with this gait pattern would reduce walking speed, cause toe dragging, compromise the stability of walking, increase risk of falling, and interfere with daily activities. This randomized controlled trial will contribute to the accelerated refinement and development of efficient and effective treatment programs for patients with post-stroke spastic stiff knee gait. The Robot-assisted gait training (RAGT) has the potential to be an optimal adjunctive therapy following BoNT-A treatment. Combinations of BoNT-A and rehabilitation training are suggested to optimize the treatment effect for spasticity related disabilities.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Spastic Gait Spastic

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

CROSSOVER

Primary Study Purpose

TREATMENT

Blinding Strategy

SINGLE

Participants
There will be a research code representing patients' identity, this code will not show patients' name, social security number, and home address. For the results of patients' visit and the diagnosis, the study moderator will maintain a confidential attitude and be careful to maintain patients' privacy.

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

RF BoNT-A injection in first period and robot therapy

Training session included 40 minutes Robotic Therapy, the group will receive 2 sessions per week, for 12 weeks.

Group Type EXPERIMENTAL

BoNT-A injections

Intervention Type PROCEDURE

Botox brand BoNT-A Purified Neurotoxin Complex, (Allergan Pharmaceuticals, Irvine, CA) will be prepared by diluting lyophilized toxin with 0.9% saline to a concentration of 33-100 U/ml. depending on the size of the target muscle. Location of the targeted muscle will be confirmed by using echo guide. The total dose range is 100 units. The dose range of each target muscle is as below:100 units in rectus femoris.

RF BoNT-A injection in first period and robot therapy

Intervention Type OTHER

Wearable overground exoskeleton lower extremity robot system will be used in this study. The robot lower extremity system consisted with bilateral motors for assisting left and right knees, a pelvis belt and chariot system for suspending the device, and thigh and shank cuffs for attaching the exoskeleton "links" to the user. Patients will wear receive exoskeleton lower extremity robot after BoNT-A injected in the affected rectus femoris, then start to do the functional ambulation training to do 1) walking over ground 2) walking with turning, 3) get in and out of chair, 4) crouching and rising, and 5) going up and down stairs. After a 3-month washout period crossover to none RF BoNT-A injection, and received second round of robot therapy.

RF BoNT-A injection in second period and robot therapy

Training session included 40 minutes Robotic Therapy, the group will receive 2 sessions per week, for 12 weeks.

Group Type EXPERIMENTAL

BoNT-A injections

Intervention Type PROCEDURE

Botox brand BoNT-A Purified Neurotoxin Complex, (Allergan Pharmaceuticals, Irvine, CA) will be prepared by diluting lyophilized toxin with 0.9% saline to a concentration of 33-100 U/ml. depending on the size of the target muscle. Location of the targeted muscle will be confirmed by using echo guide. The total dose range is 100 units. The dose range of each target muscle is as below:100 units in rectus femoris.

RF BoNT-A injection in second period and robot therapy

Intervention Type OTHER

Wearable overground exoskeleton lower extremity robot system will be used in this study. The robot lower extremity system consisted with bilateral motors for assisting left and right knees, a pelvis belt and chariot system for suspending the device, and thigh and shank cuffs for attaching the exoskeleton "links" to the user. Patients will wear receive exoskeleton lower extremity robot after BoNT-A injected (do not inject BoNT-A in the affected rectus femoris), then start to do the functional ambulation training to do 1) walking over ground 2) walking with turning, 3) get in and out of chair, 4) crouching and rising, and 5) going up and down stairs. After a 3-month washout period crossover to RF BoNT-A injection, and received second round of robot therapy.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

BoNT-A injections

Botox brand BoNT-A Purified Neurotoxin Complex, (Allergan Pharmaceuticals, Irvine, CA) will be prepared by diluting lyophilized toxin with 0.9% saline to a concentration of 33-100 U/ml. depending on the size of the target muscle. Location of the targeted muscle will be confirmed by using echo guide. The total dose range is 100 units. The dose range of each target muscle is as below:100 units in rectus femoris.

Intervention Type PROCEDURE

RF BoNT-A injection in first period and robot therapy

Wearable overground exoskeleton lower extremity robot system will be used in this study. The robot lower extremity system consisted with bilateral motors for assisting left and right knees, a pelvis belt and chariot system for suspending the device, and thigh and shank cuffs for attaching the exoskeleton "links" to the user. Patients will wear receive exoskeleton lower extremity robot after BoNT-A injected in the affected rectus femoris, then start to do the functional ambulation training to do 1) walking over ground 2) walking with turning, 3) get in and out of chair, 4) crouching and rising, and 5) going up and down stairs. After a 3-month washout period crossover to none RF BoNT-A injection, and received second round of robot therapy.

Intervention Type OTHER

RF BoNT-A injection in second period and robot therapy

Wearable overground exoskeleton lower extremity robot system will be used in this study. The robot lower extremity system consisted with bilateral motors for assisting left and right knees, a pelvis belt and chariot system for suspending the device, and thigh and shank cuffs for attaching the exoskeleton "links" to the user. Patients will wear receive exoskeleton lower extremity robot after BoNT-A injected (do not inject BoNT-A in the affected rectus femoris), then start to do the functional ambulation training to do 1) walking over ground 2) walking with turning, 3) get in and out of chair, 4) crouching and rising, and 5) going up and down stairs. After a 3-month washout period crossover to RF BoNT-A injection, and received second round of robot therapy.

Intervention Type OTHER

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Ischemic or hemorrhagic stroke ≥ 3 months
* Age ≥ 20 years
* Functional Ambulation Category ≥4
* Affected rectus femoris spasticity (MAS between 1+ and 2)
* BoNT-A treatment-naive or treated with BoNT-A ≥4 months in the affected leg before recruitment
* Receiving oral muscle relaxants or other medication for spasticity were on a stable dose for≥2 months
* Can obey simple order

Exclusion Criteria

* Pregnant
* Sensitivity to BoNT-A
* Infection of the skin, soft tissue in the injection area
* Participation in other trials
* Fixed contractures or bony deformities in the affected leg
* Previous treatment of the affected leg with neurolytic or surgical procedures (i.e., phenol block, tendon lengthening of transfer, tenotomy, muscle release, arthrodesis)
* Severe cardiovascular comorbidity (i.e., recent myocardial infarction, heart failure, uncontrolled hypertension, orthostatic hypotension)
Minimum Eligible Age

20 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Chang Gung Memorial Hospital

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Hung Jen-Wen

Role: PRINCIPAL_INVESTIGATOR

Chang Gung Memorial Hospital-Kaohsiung Medical Center

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Department of Rehabilitation, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan

Kaohsiung City, Kaohsiung, Taiwan

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Taiwan

References

Explore related publications, articles, or registry entries linked to this study.

Gregson JM, Leathley MJ, Moore AP, Smith TL, Sharma AK, Watkins CL. Reliability of measurements of muscle tone and muscle power in stroke patients. Age Ageing. 2000 May;29(3):223-8. doi: 10.1093/ageing/29.3.223.

Reference Type BACKGROUND
PMID: 10855904 (View on PubMed)

Hinderer SR, Gupta S. Functional outcome measures to assess interventions for spasticity. Arch Phys Med Rehabil. 1996 Oct;77(10):1083-9. doi: 10.1016/s0003-9993(96)90073-8.

Reference Type BACKGROUND
PMID: 8857891 (View on PubMed)

Holden MK, Gill KM, Magliozzi MR, Nathan J, Piehl-Baker L. Clinical gait assessment in the neurologically impaired. Reliability and meaningfulness. Phys Ther. 1984 Jan;64(1):35-40. doi: 10.1093/ptj/64.1.35.

Reference Type BACKGROUND
PMID: 6691052 (View on PubMed)

Riley PO, Kerrigan DC. Torque action of two-joint muscles in the swing period of stiff-legged gait: a forward dynamic model analysis. J Biomech. 1998 Sep;31(9):835-40. doi: 10.1016/s0021-9290(98)00107-9.

Reference Type BACKGROUND
PMID: 9802784 (View on PubMed)

Flansbjer UB, Holmback AM, Downham D, Patten C, Lexell J. Reliability of gait performance tests in men and women with hemiparesis after stroke. J Rehabil Med. 2005 Mar;37(2):75-82. doi: 10.1080/16501970410017215.

Reference Type BACKGROUND
PMID: 15788341 (View on PubMed)

Baer HR, Wolf SL. Modified emory functional ambulation profile: an outcome measure for the rehabilitation of poststroke gait dysfunction. Stroke. 2001 Apr;32(4):973-9. doi: 10.1161/01.str.32.4.973.

Reference Type BACKGROUND
PMID: 11283399 (View on PubMed)

Beckerman H, Becher J, Lankhorst GJ, Verbeek AL. Walking ability of stroke patients: efficacy of tibial nerve blocking and a polypropylene ankle-foot orthosis. Arch Phys Med Rehabil. 1996 Nov;77(11):1144-51. doi: 10.1016/s0003-9993(96)90138-0.

Reference Type BACKGROUND
PMID: 8931526 (View on PubMed)

Berg KO, Wood-Dauphinee SL, Williams JI, Maki B. Measuring balance in the elderly: validation of an instrument. Can J Public Health. 1992 Jul-Aug;83 Suppl 2:S7-11.

Reference Type BACKGROUND
PMID: 1468055 (View on PubMed)

Bittner V, Weiner DH, Yusuf S, Rogers WJ, McIntyre KM, Bangdiwala SI, Kronenberg MW, Kostis JB, Kohn RM, Guillotte M, et al. Prediction of mortality and morbidity with a 6-minute walk test in patients with left ventricular dysfunction. SOLVD Investigators. JAMA. 1993 Oct 13;270(14):1702-7.

Reference Type BACKGROUND
PMID: 8411500 (View on PubMed)

Bleyenheuft C, Cockx S, Caty G, Stoquart G, Lejeune T, Detrembleur C. The effect of botulinum toxin injections on gait control in spastic stroke patients presenting with a stiff-knee gait. Gait Posture. 2009 Aug;30(2):168-72. doi: 10.1016/j.gaitpost.2009.04.003. Epub 2009 May 12.

Reference Type BACKGROUND
PMID: 19442523 (View on PubMed)

Blum L, Korner-Bitensky N. Usefulness of the Berg Balance Scale in stroke rehabilitation: a systematic review. Phys Ther. 2008 May;88(5):559-66. doi: 10.2522/ptj.20070205. Epub 2008 Feb 21.

Reference Type BACKGROUND
PMID: 18292215 (View on PubMed)

Brewer BR, McDowell SK, Worthen-Chaudhari LC. Poststroke upper extremity rehabilitation: a review of robotic systems and clinical results. Top Stroke Rehabil. 2007 Nov-Dec;14(6):22-44. doi: 10.1310/tsr1406-22.

Reference Type BACKGROUND
PMID: 18174114 (View on PubMed)

Bruni MF, Melegari C, De Cola MC, Bramanti A, Bramanti P, Calabro RS. What does best evidence tell us about robotic gait rehabilitation in stroke patients: A systematic review and meta-analysis. J Clin Neurosci. 2018 Feb;48:11-17. doi: 10.1016/j.jocn.2017.10.048. Epub 2017 Dec 6.

Reference Type BACKGROUND
PMID: 29208476 (View on PubMed)

Calabro RS, Naro A, Russo M, Bramanti P, Carioti L, Balletta T, Buda A, Manuli A, Filoni S, Bramanti A. Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial. J Neuroeng Rehabil. 2018 Apr 25;15(1):35. doi: 10.1186/s12984-018-0377-8.

Reference Type BACKGROUND
PMID: 29695280 (View on PubMed)

Caty GD, Detrembleur C, Bleyenheuft C, Deltombe T, Lejeune TM. Effect of simultaneous botulinum toxin injections into several muscles on impairment, activity, participation, and quality of life among stroke patients presenting with a stiff knee gait. Stroke. 2008 Oct;39(10):2803-8. doi: 10.1161/STROKEAHA.108.516153. Epub 2008 Jul 17.

Reference Type BACKGROUND
PMID: 18635841 (View on PubMed)

Chang WH, Kim YH. Robot-assisted Therapy in Stroke Rehabilitation. J Stroke. 2013 Sep;15(3):174-81. doi: 10.5853/jos.2013.15.3.174. Epub 2013 Sep 27.

Reference Type BACKGROUND
PMID: 24396811 (View on PubMed)

Chen B, Ma H, Qin LY, Gao F, Chan KM, Law SW, Qin L, Liao WH. Recent developments and challenges of lower extremity exoskeletons. J Orthop Translat. 2015 Oct 17;5:26-37. doi: 10.1016/j.jot.2015.09.007. eCollection 2016 Apr.

Reference Type BACKGROUND
PMID: 30035072 (View on PubMed)

Chou MY, Nishita Y, Nakagawa T, Tange C, Tomida M, Shimokata H, Otsuka R, Chen LK, Arai H. Role of gait speed and grip strength in predicting 10-year cognitive decline among community-dwelling older people. BMC Geriatr. 2019 Jul 5;19(1):186. doi: 10.1186/s12877-019-1199-7.

Reference Type BACKGROUND
PMID: 31277579 (View on PubMed)

Council, M. R. (1976). Aids to the examination of the peripheral nervous system. HM Stationery Office.

Reference Type BACKGROUND

Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007 Nov;54(11):1940-50. doi: 10.1109/TBME.2007.901024.

Reference Type BACKGROUND
PMID: 18018689 (View on PubMed)

Dobkin BH. Progressive Staging of Pilot Studies to Improve Phase III Trials for Motor Interventions. Neurorehabil Neural Repair. 2009 Mar-Apr;23(3):197-206. doi: 10.1177/1545968309331863.

Reference Type BACKGROUND
PMID: 19240197 (View on PubMed)

Eng JJ, Tang PF. Gait training strategies to optimize walking ability in people with stroke: a synthesis of the evidence. Expert Rev Neurother. 2007 Oct;7(10):1417-36. doi: 10.1586/14737175.7.10.1417.

Reference Type BACKGROUND
PMID: 17939776 (View on PubMed)

Erbil D, Tugba G, Murat TH, Melike A, Merve A, Cagla K, Mehmetali CC, Akay O, Nigar D. Effects of robot-assisted gait training in chronic stroke patients treated by botulinum toxin-a: A pivotal study. Physiother Res Int. 2018 Jul;23(3):e1718. doi: 10.1002/pri.1718. Epub 2018 May 28.

Reference Type BACKGROUND
PMID: 29808523 (View on PubMed)

Huang JJ, Pei YC, Chen YY, Tseng SS, Hung JW. Bilateral Sensorimotor Cortical Communication Modulated by Multiple Hand Training in Stroke Participants: A Single Training Session Pilot Study. Bioengineering (Basel). 2022 Nov 24;9(12):727. doi: 10.3390/bioengineering9120727.

Reference Type BACKGROUND
PMID: 36550934 (View on PubMed)

Huang YD, Li W, Chou YL, Hung ES, Kang JH. Pendulum test in chronic hemiplegic stroke population: additional ambulatory information beyond spasticity. Sci Rep. 2021 Jul 20;11(1):14769. doi: 10.1038/s41598-021-94108-5.

Reference Type BACKGROUND
PMID: 34285276 (View on PubMed)

Hung JW, Chen YW, Chen YJ, Pong YP, Wu WC, Chang KC, Wu CY. The Effects of Distributed vs. Condensed Schedule for Robot-Assisted Training with Botulinum Toxin A Injection for Spastic Upper Limbs in Chronic Post-Stroke Subjects. Toxins (Basel). 2021 Aug 1;13(8):539. doi: 10.3390/toxins13080539.

Reference Type BACKGROUND
PMID: 34437410 (View on PubMed)

Hung JW, Yen CL, Chang KC, Chiang WC, Chuang IC, Pong YP, Wu WC, Wu CY. A Pilot Randomized Controlled Trial of Botulinum Toxin Treatment Combined with Robot-Assisted Therapy, Mirror Therapy, or Active Control Treatment in Patients with Spasticity Following Stroke. Toxins (Basel). 2022 Jun 17;14(6):415. doi: 10.3390/toxins14060415.

Reference Type BACKGROUND
PMID: 35737076 (View on PubMed)

Katrak PH, Cole AM, Poulos CJ, McCauley JC. Objective assessment of spasticity, strength, and function with early exhibition of dantrolene sodium after cerebrovascular accident: a randomized double-blind study. Arch Phys Med Rehabil. 1992 Jan;73(1):4-9.

Reference Type BACKGROUND
PMID: 1729971 (View on PubMed)

Kerrigan DC, Bang MS, Burke DT. An algorithm to assess stiff-legged gait in traumatic brain injury. J Head Trauma Rehabil. 1999 Apr;14(2):136-45. doi: 10.1097/00001199-199904000-00004.

Reference Type BACKGROUND
PMID: 10191372 (View on PubMed)

Kerrigan DC, Burke DT, Nieto TJ, Riley PO. Can toe-walking contribute to stiff-legged gait? Am J Phys Med Rehabil. 2001 Jan;80(1):33-7. doi: 10.1097/00002060-200101000-00009.

Reference Type BACKGROUND
PMID: 11138952 (View on PubMed)

Kerrigan DC, Karvosky ME, Riley PO. Spastic paretic stiff-legged gait: joint kinetics. Am J Phys Med Rehabil. 2001 Apr;80(4):244-9. doi: 10.1097/00002060-200104000-00002.

Reference Type BACKGROUND
PMID: 11277129 (View on PubMed)

Casey Kerrigan D, S Roth R, Riley PO. The modelling of adult spastic paretic stiff-legged gait swing period based on actual kinematic data. Gait Posture. 1998 Mar 1;7(2):117-124. doi: 10.1016/s0966-6362(97)00040-4.

Reference Type BACKGROUND
PMID: 10200381 (View on PubMed)

Kerrigan, D. C., & Sheffler, L. R. (1995). Spastic paretic gait: an approach to evaluation and treatment. Critical Reviews™ in Physical and Rehabilitation Medicine, 7(3).

Reference Type BACKGROUND

Kramer SF, Hung SH, Brodtmann A. The Impact of Physical Activity Before and After Stroke on Stroke Risk and Recovery: a Narrative Review. Curr Neurol Neurosci Rep. 2019 Apr 22;19(6):28. doi: 10.1007/s11910-019-0949-4.

Reference Type BACKGROUND
PMID: 31011851 (View on PubMed)

Levy J, Molteni F, Cannaviello G, Lansaman T, Roche N, Bensmail D. Does botulinum toxin treatment improve upper limb active function? Ann Phys Rehabil Med. 2019 Jul;62(4):234-240. doi: 10.1016/j.rehab.2018.05.1320. Epub 2018 Jun 28.

Reference Type BACKGROUND
PMID: 29960017 (View on PubMed)

Li S, Francisco GE. New insights into the pathophysiology of post-stroke spasticity. Front Hum Neurosci. 2015 Apr 10;9:192. doi: 10.3389/fnhum.2015.00192. eCollection 2015.

Reference Type BACKGROUND
PMID: 25914638 (View on PubMed)

Lundstrom E, Terent A, Borg J. Prevalence of disabling spasticity 1 year after first-ever stroke. Eur J Neurol. 2008 Jun;15(6):533-9. doi: 10.1111/j.1468-1331.2008.02114.x. Epub 2008 Mar 18.

Reference Type BACKGROUND
PMID: 18355307 (View on PubMed)

McGibbon CA, Sexton A, Jayaraman A, Deems-Dluhy S, Gryfe P, Novak A, Dutta T, Fabara E, Adans-Dester C, Bonato P. Evaluation of the Keeogo exoskeleton for assisting ambulatory activities in people with multiple sclerosis: an open-label, randomized, cross-over trial. J Neuroeng Rehabil. 2018 Dec 12;15(1):117. doi: 10.1186/s12984-018-0468-6.

Reference Type BACKGROUND
PMID: 30541585 (View on PubMed)

Molteni F, Gasperini G, Cannaviello G, Guanziroli E. Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review. PM R. 2018 Sep;10(9 Suppl 2):S174-S188. doi: 10.1016/j.pmrj.2018.06.005.

Reference Type BACKGROUND
PMID: 30269804 (View on PubMed)

Mudge S, Stott NS. Timed walking tests correlate with daily step activity in persons with stroke. Arch Phys Med Rehabil. 2009 Feb;90(2):296-301. doi: 10.1016/j.apmr.2008.07.025.

Reference Type BACKGROUND
PMID: 19236983 (View on PubMed)

Negrini F, Gasperini G, Guanziroli E, Vitale JA, Banfi G, Molteni F. Using an Accelerometer-Based Step Counter in Post-Stroke Patients: Validation of a Low-Cost Tool. Int J Environ Res Public Health. 2020 May 2;17(9):3177. doi: 10.3390/ijerph17093177.

Reference Type BACKGROUND
PMID: 32370210 (View on PubMed)

Noonan V, Dean E. Submaximal exercise testing: clinical application and interpretation. Phys Ther. 2000 Aug;80(8):782-807.

Reference Type BACKGROUND
PMID: 10911416 (View on PubMed)

Novak AC, Olney SJ, Bagg S, Brouwer B. Gait changes following botulinum toxin A treatment in stroke. Top Stroke Rehabil. 2009 Sep-Oct;16(5):367-76. doi: 10.1310/tsr1605-367.

Reference Type BACKGROUND
PMID: 19903655 (View on PubMed)

O'Dwyer NJ, Ada L, Neilson PD. Spasticity and muscle contracture following stroke. Brain. 1996 Oct;119 ( Pt 5):1737-49. doi: 10.1093/brain/119.5.1737.

Reference Type BACKGROUND
PMID: 8931594 (View on PubMed)

Olney, S. J., & Richards, C. (1996). Hemiparetic gait following stroke. Part I: Characteristics. Gait & posture, 4(2), 136-148.

Reference Type BACKGROUND

Perry, J. (1992). Gait Analysis. Thorofare, NJ: SLACK. In: Inc.

Reference Type BACKGROUND

Piazza SJ, Delp SL. The influence of muscles on knee flexion during the swing phase of gait. J Biomech. 1996 Jun;29(6):723-33. doi: 10.1016/0021-9290(95)00144-1.

Reference Type BACKGROUND
PMID: 9147969 (View on PubMed)

Picelli A, Bacciga M, Melotti C, LA Marchina E, Verzini E, Ferrari F, Pontillo A, Corradi J, Tamburin S, Saltuari L, Corradini C, Waldner A, Smania N. Combined effects of robot-assisted gait training and botulinum toxin type A on spastic equinus foot in patients with chronic stroke: a pilot, single blind, randomized controlled trial. Eur J Phys Rehabil Med. 2016 Dec;52(6):759-766. Epub 2016 Apr 21.

Reference Type BACKGROUND
PMID: 27098300 (View on PubMed)

Picelli A, Dambruoso F, Bronzato M, Barausse M, Gandolfi M, Smania N. Efficacy of therapeutic ultrasound and transcutaneous electrical nerve stimulation compared with botulinum toxin type A in the treatment of spastic equinus in adults with chronic stroke: a pilot randomized controlled trial. Top Stroke Rehabil. 2014;21 Suppl 1:S8-16. doi: 10.1310/tsr21S1-S8.

Reference Type BACKGROUND
PMID: 24722047 (View on PubMed)

Portney, L. G., & Watkins, M. P. (2009). Foundations of clinical research: applications to practice (Vol. 892). Pearson/Prentice Hall Upper Saddle River, NJ.

Reference Type BACKGROUND

Powell LE, Myers AM. The Activities-specific Balance Confidence (ABC) Scale. J Gerontol A Biol Sci Med Sci. 1995 Jan;50A(1):M28-34. doi: 10.1093/gerona/50a.1.m28.

Reference Type BACKGROUND
PMID: 7814786 (View on PubMed)

Robertson JV, Pradon D, Bensmail D, Fermanian C, Bussel B, Roche N. Relevance of botulinum toxin injection and nerve block of rectus femoris to kinematic and functional parameters of stiff knee gait in hemiplegic adults. Gait Posture. 2009 Jan;29(1):108-12. doi: 10.1016/j.gaitpost.2008.07.005. Epub 2008 Sep 3.

Reference Type BACKGROUND
PMID: 18771925 (View on PubMed)

Roche N, Boudarham J, Hardy A, Bonnyaud C, Bensmail B. Use of gait parameters to predict the effectiveness of botulinum toxin injection in the spastic rectus femoris muscle of stroke patients with stiff knee gait. Eur J Phys Rehabil Med. 2015 Aug;51(4):361-70. Epub 2014 Sep 12.

Reference Type BACKGROUND
PMID: 25213306 (View on PubMed)

Rosales RL, Chua-Yap AS. Evidence-based systematic review on the efficacy and safety of botulinum toxin-A therapy in post-stroke spasticity. J Neural Transm (Vienna). 2008;115(4):617-23. doi: 10.1007/s00702-007-0869-3. Epub 2008 Mar 6.

Reference Type BACKGROUND
PMID: 18322637 (View on PubMed)

Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987 Feb;67(2):206-7. doi: 10.1093/ptj/67.2.206.

Reference Type BACKGROUND
PMID: 3809245 (View on PubMed)

Santamato A, Micello MF, Panza F, Fortunato F, Baricich A, Cisari C, Pilotto A, Logroscino G, Fiore P, Ranieri M. Can botulinum toxin type A injection technique influence the clinical outcome of patients with post-stroke upper limb spasticity? A randomized controlled trial comparing manual needle placement and ultrasound-guided injection techniques. J Neurol Sci. 2014 Dec 15;347(1-2):39-43. doi: 10.1016/j.jns.2014.09.016. Epub 2014 Sep 19.

Reference Type BACKGROUND
PMID: 25263601 (View on PubMed)

Santamato A, Ranieri M, Solfrizzi V, Lozupone M, Vecchio M, Daniele A, Greco A, Seripa D, Logroscino G, Panza F. High doses of incobotulinumtoxinA for the treatment of post-stroke spasticity: are they safe and effective? Expert Opin Drug Metab Toxicol. 2016 Aug;12(8):843-6. doi: 10.1080/17425255.2016.1198318. Epub 2016 Jun 17. No abstract available.

Reference Type BACKGROUND
PMID: 27291256 (View on PubMed)

Seth A, Hicks JL, Uchida TK, Habib A, Dembia CL, Dunne JJ, Ong CF, DeMers MS, Rajagopal A, Millard M, Hamner SR, Arnold EM, Yong JR, Lakshmikanth SK, Sherman MA, Ku JP, Delp SL. OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Comput Biol. 2018 Jul 26;14(7):e1006223. doi: 10.1371/journal.pcbi.1006223. eCollection 2018 Jul.

Reference Type BACKGROUND
PMID: 30048444 (View on PubMed)

Stoquart GG, Detrembleur C, Palumbo S, Deltombe T, Lejeune TM. Effect of botulinum toxin injection in the rectus femoris on stiff-knee gait in people with stroke: a prospective observational study. Arch Phys Med Rehabil. 2008 Jan;89(1):56-61. doi: 10.1016/j.apmr.2007.08.131.

Reference Type BACKGROUND
PMID: 18164331 (View on PubMed)

Tenniglo MJ, Nederhand MJ, Prinsen EC, Nene AV, Rietman JS, Buurke JH. Effect of chemodenervation of the rectus femoris muscle in adults with a stiff knee gait due to spastic paresis: a systematic review with a meta-analysis in patients with stroke. Arch Phys Med Rehabil. 2014 Mar;95(3):576-87. doi: 10.1016/j.apmr.2013.11.008. Epub 2013 Dec 3.

Reference Type BACKGROUND
PMID: 24309072 (View on PubMed)

Tok F, Balaban B, Yasar E, Alaca R, Tan AK. The effects of onabotulinum toxin A injection into rectus femoris muscle in hemiplegic stroke patients with stiff-knee gait: a placebo-controlled, nonrandomized trial. Am J Phys Med Rehabil. 2012 Apr;91(4):321-6. doi: 10.1097/PHM.0b013e3182465feb.

Reference Type BACKGROUND
PMID: 22311056 (View on PubMed)

Trompetto C, Marinelli L, Mori L, Cossu E, Zilioli R, Simonini M, Abbruzzese G, Baratto L. Postactivation depression changes after robotic-assisted gait training in hemiplegic stroke patients. Gait Posture. 2013 Sep;38(4):729-33. doi: 10.1016/j.gaitpost.2013.03.011. Epub 2013 Apr 6.

Reference Type BACKGROUND
PMID: 23570893 (View on PubMed)

Tsai RC, Lin KN, Wang HJ, Liu HC. Evaluating the uses of the total score and the domain scores in the Cognitive Abilities Screening Instrument, Chinese version (CASI C-2.0): results of confirmatory factor analysis. Int Psychogeriatr. 2007 Dec;19(6):1051-63. doi: 10.1017/S1041610207005327. Epub 2007 Apr 23.

Reference Type BACKGROUND
PMID: 17451615 (View on PubMed)

Waters RL, Garland DE, Perry J, Habig T, Slabaugh P. Stiff-legged gait in hemiplegia: surgical correction. J Bone Joint Surg Am. 1979 Sep;61(6A):927-33.

Reference Type BACKGROUND
PMID: 479242 (View on PubMed)

Welmer AK, von Arbin M, Widen Holmqvist L, Sommerfeld DK. Spasticity and its association with functioning and health-related quality of life 18 months after stroke. Cerebrovasc Dis. 2006;21(4):247-53. doi: 10.1159/000091222. Epub 2006 Jan 27.

Reference Type BACKGROUND
PMID: 16446538 (View on PubMed)

Wissel J, Manack A, Brainin M. Toward an epidemiology of poststroke spasticity. Neurology. 2013 Jan 15;80(3 Suppl 2):S13-9. doi: 10.1212/WNL.0b013e3182762448.

Reference Type BACKGROUND
PMID: 23319481 (View on PubMed)

Wissel J, Verrier M, Simpson DM, Charles D, Guinto P, Papapetropoulos S, Sunnerhagen KS. Post-stroke spasticity: predictors of early development and considerations for therapeutic intervention. PM R. 2015 Jan;7(1):60-7. doi: 10.1016/j.pmrj.2014.08.946. Epub 2014 Aug 27.

Reference Type BACKGROUND
PMID: 25171879 (View on PubMed)

Yelnik A, Albert T, Bonan I, Laffont I. A clinical guide to assess the role of lower limb extensor overactivity in hemiplegic gait disorders. Stroke. 1999 Mar;30(3):580-5. doi: 10.1161/01.str.30.3.580.

Reference Type BACKGROUND
PMID: 10066855 (View on PubMed)

Provided Documents

Download supplemental materials such as informed consent forms, study protocols, or participant manuals.

Document Type: Study Protocol and Statistical Analysis Plan

View Document

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

NMRPG8N0051

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Robotic Exoskeleton Assisted Gait Post Stroke
NCT04309305 ENROLLING_BY_INVITATION PHASE1