Peri-luminal COROnary CTa AI-driven radiOMICS to Identify Vulnerable Patients (CORO-CTAIOMICS)
NCT ID: NCT06029777
Last Updated: 2026-01-15
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
2190 participants
OBSERVATIONAL
2023-07-31
2024-09-24
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Risk Evaluation by COronary Imaging and Artificial intelliGence Based fuNctIonal analyZing tEchniques - III
NCT06793774
Computed Tomography Coronary Angiography (CTCA) Prognostic Registry for Coronary Artery Disease
NCT01384721
Implementation of Contemporary Coronary CT Angiography in Clinical Practice
NCT06273033
AI-enabled Screening and Diagnosis of Cardiomyopathies Using Coronary CTA
NCT06748261
Trustworthy, Integrated Artificial Intelligence Tools for Predicting High-risk CORonary PlaqueS
NCT06410690
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
In the last years, cCTA has become a pivotal diagnostic tool in the setting of suspected CAD. The latest ESC guidelines recommend cCTA as the first line diagnostic test for patients with symptoms suspected to originate from CAD, especially in intermediate pre-test probability (15 to 85%). patients. The AHA and Italian guidelines essentially suggest the same approach. The recommendations are based on the extremely high accuracy of cCTA in ruling-out obstructive CAD. As result the investigators assist to a tremendous increase in the number of patients undergoing CCTA in the daily clinical routine. Most of these patients (80%) result to not have obstructive CAD, but this result does not mean that all this patients are at low risk. The prognostic stratification of these patients is still an urgent unmet need. Among patients with absence of obstructive CAD the investigators found patients with different degree of atherosclerotic burden and patients with different kind of plaques (high or low risk plaques) and different degrees of coronary wall and pericoronary inflammation. The prognostic stratification of these patients is still an urgent unmet need. The cCTA images include a lot of information with a great potential informative content about the atherosclerotic burden and the vulnerability of the non-obstructive CAD of each single patients, but all these information are not currently exploited in the clinical routine to change the patients management for a lack of robust and reproducible tools to extract this data in quantitative way and o integrate them in a prognostic risk score.
In the last years, it has been shown that coronary artery plaque characteristics (e.g. lesion length, volume, stenosis, attenuation, remodeling index, etc) (2) and pericoronary adipose tissue (3) attenuation carry a significant prognostic value. However, it is known that many of these biomarkers suffer from low reproducibility, mainly due to technical constrains in automatic or semiautomatic separation of plaques from surrounding adipose tissue. This may cause the incorrect inclusion of plaques into the segmentation of pericoronary adipose tissue and vice-versa, leading to unreliable results in the assessment of plaque burden and plaque attenuation (4). Furthermore, the qualitative or semiquantitative evaluation of the aforementioned plaque characteristics and pericoronary fat density might reflect only part of the information available. In this scenario, radiomics-based assessment may unveil information hidden to the human eye, leading to better risk stratification of cardiovascular risk (5, 6).
This study adds two major improvements in prognostic risk stratification based on cCTA plaque and adipose tissue analysis. First, the investigators propose a method to segment both the plaques and the pericoronary adipose tissue easily and independently by semiautomatic or automatic identification of the edge between plaque and fat (which is critical). In fact, this tool will perform a segmentation of all the tissue included in a circular range outside the coronary lumen with a diameter based on the lumen diameter itself. This technical solution will greatly increase reproducibility of segmentation. Secondly, the investigators propose the use radiomics to analyze this circular pericoronary milieu, potentially individuating novel biomarkers -invisible to human eye- of CAD instability capable of providing important prognostic value.
In detail, the novelty of this research lies in the fact that 1) pericoronary adipose tissue and plaques will be treated as a single milieu, thus significantly reducing the effort for accurate tissue segmentation and reducing reproducibility concerns; 2) radiomics will be applied to extract meaningful information invisible to human eye capable. Furthermore, this radiomics approach will be supported by machine learning (ML) models including regularized regression, genetic algorithms and deep learning, due to the capability of ML to directly manage and assess the huge amount of data extracted from the radiological images. Thus, the final outcome of this research will be an algorithm capable of predicting the risk of MACEs of the single patient by automatically analyzing peri-luminal coronary tissue radiomics data derived from cCTA performed in the routine clinical practice.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
RETROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Retrospective cohort
The retrospective cohort will include 2190 patients who underwent a clinically indicated cCTA between 2017 and 2019 at the Radiology Unit of San Raffaele Hospital.
No other interventions will be performed. Patients will be solely contacted via a telephone call to assess their clinical status.
No interventions assigned to this group
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Follow-up duration of at least 4 years.
Exclusion Criteria
2. Age \<18 years old
3. History of previous coronary revascularization
4. Presence of other cardiovascular comorbidities (e.g. inflammatory cardiomyopathy, valvular cardiomyopathy, idiopathic dilated cardiomyopathy, infiltrative cardiomyopathy)
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Ministry of Health, Italy
OTHER_GOV
IRCCS San Raffaele
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Antonio Esposito
Professor
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
IRCCS San Raffaele
Milan, , Italy
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Riley RD, Snell KI, Ensor J, Burke DL, Harrell FE Jr, Moons KG, Collins GS. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. Stat Med. 2019 Mar 30;38(7):1276-1296. doi: 10.1002/sim.7992. Epub 2018 Oct 24.
Nerlekar N, Ha FJ, Cheshire C, Rashid H, Cameron JD, Wong DT, Seneviratne S, Brown AJ. Computed Tomographic Coronary Angiography-Derived Plaque Characteristics Predict Major Adverse Cardiovascular Events: A Systematic Review and Meta-Analysis. Circ Cardiovasc Imaging. 2018 Jan;11(1):e006973. doi: 10.1161/CIRCIMAGING.117.006973.
Goeller M, Achenbach S, Herrmann N, Bittner DO, Kilian T, Dey D, Raaz-Schrauder D, Marwan M. Pericoronary adipose tissue CT attenuation and its association with serum levels of atherosclerosis-relevant inflammatory mediators, coronary calcification and major adverse cardiac events. J Cardiovasc Comput Tomogr. 2021 Sep-Oct;15(5):449-454. doi: 10.1016/j.jcct.2021.03.005. Epub 2021 Apr 3.
Tzolos E, McElhinney P, Williams MC, Cadet S, Dweck MR, Berman DS, Slomka PJ, Newby DE, Dey D. Repeatability of quantitative pericoronary adipose tissue attenuation and coronary plaque burden from coronary CT angiography. J Cardiovasc Comput Tomogr. 2021 Jan-Feb;15(1):81-84. doi: 10.1016/j.jcct.2020.03.007. Epub 2020 Apr 14.
Kolossvary M, Karady J, Szilveszter B, Kitslaar P, Hoffmann U, Merkely B, Maurovich-Horvat P. Radiomic Features Are Superior to Conventional Quantitative Computed Tomographic Metrics to Identify Coronary Plaques With Napkin-Ring Sign. Circ Cardiovasc Imaging. 2017 Dec;10(12):e006843. doi: 10.1161/CIRCIMAGING.117.006843.
Lin A, Kolossvary M, Yuvaraj J, Cadet S, McElhinney PA, Jiang C, Nerlekar N, Nicholls SJ, Slomka PJ, Maurovich-Horvat P, Wong DTL, Dey D. Myocardial Infarction Associates With a Distinct Pericoronary Adipose Tissue Radiomic Phenotype: A Prospective Case-Control Study. JACC Cardiovasc Imaging. 2020 Nov;13(11):2371-2383. doi: 10.1016/j.jcmg.2020.06.033. Epub 2020 Aug 26.
Varma S, Simon R. Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics. 2006 Feb 23;7:91. doi: 10.1186/1471-2105-7-91.
Emerson RW, Adams C, Nishino T, Hazlett HC, Wolff JJ, Zwaigenbaum L, Constantino JN, Shen MD, Swanson MR, Elison JT, Kandala S, Estes AM, Botteron KN, Collins L, Dager SR, Evans AC, Gerig G, Gu H, McKinstry RC, Paterson S, Schultz RT, Styner M; IBIS Network; Schlaggar BL, Pruett JR Jr, Piven J. Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of autism at 24 months of age. Sci Transl Med. 2017 Jun 7;9(393):eaag2882. doi: 10.1126/scitranslmed.aag2882.
Brown PJ, Zhong J, Frood R, Currie S, Gilbert A, Appelt AL, Sebag-Montefiore D, Scarsbrook A. Prediction of outcome in anal squamous cell carcinoma using radiomic feature analysis of pre-treatment FDG PET-CT. Eur J Nucl Med Mol Imaging. 2019 Dec;46(13):2790-2799. doi: 10.1007/s00259-019-04495-1. Epub 2019 Sep 4.
Bardosi ZR, Dejaco D, Santer M, Kloppenburg M, Mangesius S, Widmann G, Ganswindt U, Rumpold G, Riechelmann H, Freysinger W. Benchmarking Eliminative Radiomic Feature Selection for Head and Neck Lymph Node Classification. Cancers (Basel). 2022 Jan 18;14(3):477. doi: 10.3390/cancers14030477.
Cho HH, Lee HY, Kim E, Lee G, Kim J, Kwon J, Park H. Radiomics-guided deep neural networks stratify lung adenocarcinoma prognosis from CT scans. Commun Biol. 2021 Nov 12;4(1):1286. doi: 10.1038/s42003-021-02814-7.
Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making. 2006 Nov-Dec;26(6):565-74. doi: 10.1177/0272989X06295361.
Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS One. 2015 Mar 4;10(3):e0118432. doi: 10.1371/journal.pone.0118432. eCollection 2015.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
PNRR-MAD-2022-12376633
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.