Detecting and Assessing Leg and Foot Stress Fractures Using Photon Counting CT

NCT ID: NCT06024798

Last Updated: 2024-03-28

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

RECRUITING

Total Enrollment

50 participants

Study Classification

OBSERVATIONAL

Study Start Date

2023-09-01

Study Completion Date

2025-01-30

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Stress fractures (fatigue or insufficiency fracture) are caused by the mismatch between bone strength and chronic stress applied to the bone. The vast majority of these fractures occur in the lower extremity. Early-stage diagnosis is crucial to optimize patient care. Appropriate imaging is relevant in confirming diagnosis after clinical suspicion of stress fractures. Radiographs have low sensitivity, so a relevant number of fractures go undetected. MRI has a high sensitivity, but its availability is limited, and its respective examination time is prolonged. This study investigates the diagnostic accuracy of PCCT in lower extremity stress fractures as a dose-saving technology, guaranteeing an examination according to the ALARA-principle (as low as reasonably achievable).

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Stress fracture is caused by the mismatch between bone strength and chronical stress applied to the bone, which is insufficient to cause an acute fracture, but a stress fracture does not heal itself. One can subclassify it into fatigue fracture (overuse of a healthy bone) and insufficiency fracture (normal use of a weakened bone). Fatigue fractures usually happen in healthy athletes or military recruits, whereas insufficiency fracture appear in patients with underlying metabolic or nutritional disorder (e.g. osteoporosis). On radiographs and Computed Tomography (CT), stress fractures are defined as round or linear intracortical lucency or an intertrabecular sclerotic line, which rarely intersects the cortex. Radiograph is a cost-effective and highly available modality in detecting fractures, showing however a moderate sensitivity in detecting stress fractures: 15-35% on the initial and 30-70% on the follow-up imaging. CT, another modality highly available in most hospital settings, shows a similar moderate sensitivity of 32-38% with however a corresponding high specificity of 88-98% on initial imaging. Similar specificity values can be observed for magnetic resonance imaging (MRI) and nuclear scintigraphy. Although their availability is limited and their respective examination time is prolonged, they outperform the x-ray based technologies in term of sensitivity (68-98% MRI and 50-97% nuclear scintigraphy, respectively).

The introduction of dual-energy technology advanced CT from a pure anatomical evaluation tool to a combined anatomical and functional modality. Every material has a specific absorption number, which can be assessed by applying two different energies (high and low x-ray tube voltages). This method of multispectral imaging has been established and clinically implemented in detecting gout and characterizing renal stones. Further studies have shown that DECT can depict bone marrow edema, a marker of early stress fracture and a common finding in MRI. However, this has yet not been implemented in clinical practice.

The photon-counting-computed-tomography (PCCT) has been introduced recently, enabling an energy dependent separation of photons over the whole x-ray energy spectrum. This results in reduced background noise, improved image resolution and multispectral imaging without the necessity of an additional acquisition at a different energy level. An initial study has shown already shown the superiority of PCCT by better detecting and characterizing small renal stones, when compared to conventional dual-energy computed tomography (DECT).

In this project the investigators aim to include clinically referred patients with suspected stress fracture of the lower extremity who will have an MRI to confirm the diagnosis of a suspected stress fracture. The subjects will be scanned on the new PCCT system with dose saving technology, guaranteeing an examination according to the ALARA-principle (as low as reasonably achievable). The investigators will not inject iodine contrast media and they will expect a median dose of 2-4 mSv (millisieverts). Since this will not exceed the threshold of 5 mSv, this project will be classified as category A.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Stress Fracture Foot Stress Fracture Ankle Stress Fracture of Tibia Stress Fracture Metatarsal Lower Limb Fracture

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

CASE_ONLY

Study Time Perspective

PROSPECTIVE

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Photon-Counting-Computed-Tomography

Initial and follow up (after 4 weeks) PCCT acquisition of the affected area of the lower extremity. Image acquisition will be performed on the PCCT

Intervention Type DIAGNOSTIC_TEST

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* ≥ 16 years of age. Minor study subjects can have an additional signature by the parent or legal guardian
* Clinically suspected stress or insufficiency fracture of the lower extremity
* Written consent of study participation
* Patients who will have an MRI to confirm the diagnosis of a suspected stress fracture

Exclusion Criteria

* \< 16 years of age
* Pregnancy
* Metal implants
* Postoperative situation
* Infection or tumorous disease affecting the lower extremity
Minimum Eligible Age

16 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Balgrist University Hospital

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Stephan Wirth, PD Dr.med.

Role: PRINCIPAL_INVESTIGATOR

Balgrist University Hospital

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Balgrist University Hospital

Zurich, Canton of Zurich, Switzerland

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

Switzerland

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Viehöfer Arnd, PD Dr.med.

Role: CONTACT

Zendeli Flamur

Role: CONTACT

+41 44 386 56 72

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Stephan Wirth, PD Dr.med.

Role: primary

+41 44 386 11 11

References

Explore related publications, articles, or registry entries linked to this study.

Palmer W, Bancroft L, Bonar F, Choi JA, Cotten A, Griffith JF, Robinson P, Pfirrmann CWA. Glossary of terms for musculoskeletal radiology. Skeletal Radiol. 2020 Jul;49(Suppl 1):1-33. doi: 10.1007/s00256-020-03465-1. Epub 2020 Jun 2.

Reference Type BACKGROUND
PMID: 32488336 (View on PubMed)

Lassus J, Tulikoura I, Konttinen YT, Salo J, Santavirta S. Bone stress injuries of the lower extremity: a review. Acta Orthop Scand. 2002 Jun;73(3):359-68. doi: 10.1080/000164702320155392.

Reference Type BACKGROUND
PMID: 12143987 (View on PubMed)

Wright AA, Hegedus EJ, Lenchik L, Kuhn KJ, Santiago L, Smoliga JM. Diagnostic Accuracy of Various Imaging Modalities for Suspected Lower Extremity Stress Fractures: A Systematic Review With Evidence-Based Recommendations for Clinical Practice. Am J Sports Med. 2016 Jan;44(1):255-63. doi: 10.1177/0363546515574066. Epub 2015 Mar 24.

Reference Type BACKGROUND
PMID: 25805712 (View on PubMed)

Wortman JR, Uyeda JW, Fulwadhva UP, Sodickson AD. Dual-Energy CT for Abdominal and Pelvic Trauma. Radiographics. 2018 Mar-Apr;38(2):586-602. doi: 10.1148/rg.2018170058.

Reference Type BACKGROUND
PMID: 29528816 (View on PubMed)

Cabarrus MC, Ambekar A, Lu Y, Link TM. MRI and CT of insufficiency fractures of the pelvis and the proximal femur. AJR Am J Roentgenol. 2008 Oct;191(4):995-1001. doi: 10.2214/AJR.07.3714.

Reference Type BACKGROUND
PMID: 18806133 (View on PubMed)

Gosangi B, Mandell JC, Weaver MJ, Uyeda JW, Smith SE, Sodickson AD, Khurana B. Bone Marrow Edema at Dual-Energy CT: A Game Changer in the Emergency Department. Radiographics. 2020 May-Jun;40(3):859-874. doi: 10.1148/rg.2020190173.

Reference Type BACKGROUND
PMID: 32364883 (View on PubMed)

Grunz JP, Sailer L, Lang P, Schule S, Kunz AS, Beer M, Hackenbroch C. Dual-energy CT in sacral fragility fractures: defining a cut-off Hounsfield unit value for the presence of traumatic bone marrow edema in patients with osteoporosis. BMC Musculoskelet Disord. 2022 Jul 29;23(1):724. doi: 10.1186/s12891-022-05690-2.

Reference Type BACKGROUND
PMID: 35906573 (View on PubMed)

Henes FO, Nuchtern JV, Groth M, Habermann CR, Regier M, Rueger JM, Adam G, Grossterlinden LG. Comparison of diagnostic accuracy of Magnetic Resonance Imaging and Multidetector Computed Tomography in the detection of pelvic fractures. Eur J Radiol. 2012 Sep;81(9):2337-42. doi: 10.1016/j.ejrad.2011.07.012. Epub 2011 Sep 15.

Reference Type BACKGROUND
PMID: 21924851 (View on PubMed)

Bongartz T, Glazebrook KN, Kavros SJ, Murthy NS, Merry SP, Franz WB 3rd, Michet CJ, Veetil BM, Davis JM 3rd, Mason TG 2nd, Warrington KJ, Ytterberg SR, Matteson EL, Crowson CS, Leng S, McCollough CH. Dual-energy CT for the diagnosis of gout: an accuracy and diagnostic yield study. Ann Rheum Dis. 2015 Jun;74(6):1072-7. doi: 10.1136/annrheumdis-2013-205095. Epub 2014 Mar 25.

Reference Type BACKGROUND
PMID: 24671771 (View on PubMed)

Hidas G, Eliahou R, Duvdevani M, Coulon P, Lemaitre L, Gofrit ON, Pode D, Sosna J. Determination of renal stone composition with dual-energy CT: in vivo analysis and comparison with x-ray diffraction. Radiology. 2010 Nov;257(2):394-401. doi: 10.1148/radiol.10100249. Epub 2010 Aug 31.

Reference Type BACKGROUND
PMID: 20807846 (View on PubMed)

Esquivel A, Ferrero A, Mileto A, Baffour F, Horst K, Rajiah PS, Inoue A, Leng S, McCollough C, Fletcher JG. Photon-Counting Detector CT: Key Points Radiologists Should Know. Korean J Radiol. 2022 Sep;23(9):854-865. doi: 10.3348/kjr.2022.0377.

Reference Type BACKGROUND
PMID: 36047540 (View on PubMed)

Marcus RP, Fletcher JG, Ferrero A, Leng S, Halaweish AF, Gutjahr R, Vrtiska TJ, Wells ML, Enders FT, McCollough CH. Detection and Characterization of Renal Stones by Using Photon-Counting-based CT. Radiology. 2018 Nov;289(2):436-442. doi: 10.1148/radiol.2018180126. Epub 2018 Aug 7.

Reference Type BACKGROUND
PMID: 30084728 (View on PubMed)

Tenforde AS, Fredericson M. Influence of sports participation on bone health in the young athlete: a review of the literature. PM R. 2011 Sep;3(9):861-7. doi: 10.1016/j.pmrj.2011.05.019.

Reference Type BACKGROUND
PMID: 21944303 (View on PubMed)

Grunz JP, Heidenreich JF, Lennartz S, Weighardt JP, Bley TA, Ergun S, Petritsch B, Huflage H. Spectral Shaping Via Tin Prefiltration in Ultra-High-Resolution Photon-Counting and Energy-Integrating Detector CT of the Temporal Bone. Invest Radiol. 2022 Dec 1;57(12):819-825. doi: 10.1097/RLI.0000000000000901. Epub 2022 Jun 24.

Reference Type BACKGROUND
PMID: 35776435 (View on PubMed)

Grunz JP, Petritsch B, Luetkens KS, Kunz AS, Lennartz S, Ergun S, Bley TA, Huflage H. Ultra-Low-Dose Photon-Counting CT Imaging of the Paranasal Sinus With Tin Prefiltration: How Low Can We Go? Invest Radiol. 2022 Nov 1;57(11):728-733. doi: 10.1097/RLI.0000000000000887. Epub 2022 May 6.

Reference Type BACKGROUND
PMID: 35703452 (View on PubMed)

Related Links

Access external resources that provide additional context or updates about the study.

https://ssrpm.ch/wp-content/uploads/2021/01/Report-21.pdf

Report on the use of patient shielding in radiological procedures Swiss Society of Radiobiology and Medical Physics.

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

W1024

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Orthotic Dose Response Study
NCT02629731 COMPLETED NA
Foot/Ankle At 7T MRI
NCT04441983 RECRUITING