Relationship Between Nutritional State and Respiratory Muscle Weakness in Adult Patients With Bronchietasis

NCT ID: NCT06002334

Last Updated: 2023-08-21

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Total Enrollment

100 participants

Study Classification

OBSERVATIONAL

Study Start Date

2023-02-23

Study Completion Date

2024-06-15

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

To establish a relationship between malnutrion and respiratory muscle dysfunction in patients with bronchectasis

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Many different and prevalent chronic respiratory disorders, such as chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), non-CF bronchiectasis, idiopathic pulmonary fibrosis (IPF) and lung cancer, not only target the lungs but are often associated with systemic manifestations (1-5). The latter can be magnified by the concomitant presence of aging, comorbidities or unhealthy lifestyle habits. Nutritional abnormalities stand out amongst the systemic manifestations present in chronic respiratory conditions. When these nutritional abnormalities become very severe, with marked weight and muscle mass loss, they constitute a complex metabolic syndrome, known as cachexia. However, it should be kept in mind that the earliest stages of nutritional abnormalities do not necessarily involve evident body weight loss. Diagnosis and stratification of patients with impaired nutritional status is important to decide the appropriate therapeutic approach. In fact, it has been clearly demonstrated that therapeutic interventions, even with only moderate increases in body weight or lean mass, can improve the prognosis of respiratory patients with nutritional abnormalities (6). Therefore, medical professionals should be able to detect these deficiencies early.

One of the most important clinical consequences of nutritional deficiencies in patients with chronic respiratory disorders is the loss of muscle mass and functional impairment (2,4,9). However, nutritional deficiencies not only affect muscle mass and function, but can also have a negative impact on bone and fat tissues, reaching a state of severe cachexia in the more advanced situations. Moreover, malnutrition also targets patient's immunocompetence, facilitating infections and exacerbations, which reciprocally will contribute to worsen nutritional status.

Muscle dysfunction is defined by the loss of strength (i.e., the ability to develop a maximal effort and/or endurance (i.e., the ability to maintain a submaximal effort through time) (10,11). This functional impairment can be relatively stable (this is known as 'muscle weakness') or temporary (denominated 'fatigue', which is reversible with rest) (10,11). Muscle dysfunction can involve peripheral (limb) as well as respiratory muscles, and can appear in acute or chronic respiratory diseases due to different causes. However, the loss of muscle mass is probably the main one, at least for limb muscles, having deleterious consequences on patients' prognosis (12,13). The term 'loss of muscle mass' is generally used to express a decrease in global muscle proportion or weight, but at a cellular level it actually indicates the loss of fibers or more frequently, a reduction in their size. The loss of muscle mass is mainly because of a decrease in muscle contractile protein content through different mechanisms, including the activation of the ubiquitin-proteasome system, autophagy and apoptosis (14). Global muscle mass and fiber size are the main factors contributing to muscle strength, although other components such as fiber type proportions and muscle length also play a relevant role (12). Therefore, a loss in either muscle mass or fiber atrophy will involve a decrease in contractile strength. On the other hand, endurance depends mostly on the muscle aerobic capacity, which in turn is a subrogate of the percentage of fibers with a predominant aerobic metabolism ('slow-twitch' fibers), capillary and mitochondrial density, and the capacity of oxidative enzymes on metabolic pathways (12).

The presence of limb muscle dysfunction can even limit normal walking, leading to a reduction of patient daily activities and social life, with a strong negative impact on prognosis, quality of life, and utilization of social and health resources (3,7,8,15-18). Respiratory muscle dysfunction in turn is associated with increased dyspnea (10,11,19), a worse ventilatory response to both exercise and exacerbations (19-21), and can even lead to severe respiratory failure, as well as weaning difficulties in patients submitted to mechanical ventilation (22,23).

Bronchiectasis, defined as the abnormal and irreversible dilation of the bronchi, are frequently observed even in general population, especially since the wide use of the high-resolution computed tomography (122). Although bronchiectasis can be the result of different processes, they are currently classified in those linked to CF and those that are independent of such a genetic alteration (non-CF), being the latter much more prevalent (123-125). Moreover, the above-mentioned advances in image techniques have allowed for the identification of a variable number of COPD patients who also have bronchiectasis to a greater or lesser extent (1). Although the most common clinical presentation of non-CF bronchiectasis is the presence of daily cough with abundant sputum and repeated infections (123,124), nutritional abnormalities are also frequent (2). Since many of the deleterious factors present in COPD are also present in non-CF bronchiectasis (local and systemic inflammation, exacerbations, ventilatory limitation, deconditioning, etc.) (126,127), it could be speculated that muscle dysfunction would also be frequent in this case. However, the actual prevalence of this disorder in non-CF bronchiectasis remains unclear. Respiratory muscle dysfunction has only been occasionally described in this lung disease (2,126,128,129) and, so far little attention has been given to the eventual presence of limb muscle malfunctioning. In fact, only isolated reports suggest that this latter abnormality is common in non-CF bronchiectasis (130,131) and exercise tolerance can also be reduced (126).

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Bronchiectasis

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

CASE_ONLY

Study Time Perspective

CROSS_SECTIONAL

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Adult patients of both genders who have bronchiectasis based on imaging

Exclusion Criteria

Patients less than 18 years old Patients with neuromuscular disorders, muscle dystrophies or other causes of muscle weakness
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Assiut University

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Abdelrahman Galal Salih

demonstrator

Responsibility Role PRINCIPAL_INVESTIGATOR

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Faculty of medicine, Assiut University

Asyut, , Egypt

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Egypt

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

muscle weaknessinbroncheactsis

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Bronchial Asthma & Its Exacerbation
NCT06331897 NOT_YET_RECRUITING