Comparison of the Skin Conductance Algesimeter and the Nociception Level Index in the Paediatric Population. An Observational Study.

NCT ID: NCT05998564

Last Updated: 2026-01-07

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

50 participants

Study Classification

OBSERVATIONAL

Study Start Date

2023-09-29

Study Completion Date

2024-10-25

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Evaluation and comparison of the skin conductance algesimeter(SCA) and the nociception level index(NOL) in the paediatric population (1-12 years) during surgery with general anaesthesia with bispectral index(BIS) in a tertiary hospital in The Netherlands.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Intraoperative non-invasive monitors designed to detect nociception during surgery have seen a considerable development over the past few years. There are multiple commercial monitoring devices available of which most have not been extensively evaluated in the pediatric population. Adequate levels of perioperative analgesia are important as they lead to less intraoperative nociception and less post-operative pain and post-operative complications and thereby leads to improved patient recovery. Monitoring the nociceptive state of a patient by monitoring the autonomic peripheral sympathetic pathways during surgery with these monitoring methods might lead to earlier detection of nociception and therefore less nociception and perioperative pain. Most monitoring devices have not been extensively evaluated in the pediatric population and have not yet demonstrated large clinical implications such as a decrease in post-operative pain or a decrease in opioid usage by using monitor guided analgesia administration. One of the nociception monitoring methods that has not been studied extensively in the pediatric population is the Nociception level index(NOL, Medasense, Ramat Gan, Israel). This monitor is a multi-parametric non-invasive monitoring method that measures heartrate, heartrate variability, skin temperature, photoplethysmographic amplitude, skin conductance and fluctuations in skin conductance using a non-invasive finger probe. These parameters are combined in an algorithm that provides an index from 0-100 with an abstract unit. With 0 indicating no nociception and 100 indicating severe nociception. A first study in the paediatric population with the NOL monitor showed that the NOL index was able to significantly detect first incision and significantly respond to opioid administration during surgery in children 1 to 5 years of age. Another more recent study demonstrated that the NOL index can quantify nociceptive stimuli in children aged 1 to 12. Other more commonly used monitoring methods for nociception such as fluctuations in mean arterial blood pressure(MAP), heartrate(HR) and respiratory rate(RR) did not show a significant change during first incision or during opioid administration in this study, indicating that the NOL monitor might be a better method to assess and respond to intraoperative nociception than fluctuations in MAP, HR and RR alone.

Another nociception monitoring method is the skin conduction algesimeter(SCA, Medstorm, Oslo, Norway. This is a single parameter nociception monitoring device that uses three electrodes that are fixed to the skin to measure fluctuations in skin conductance in order to detect nociception. It measures the amount of bursts in the skin sympatetic nerves in peaks per second. This contrasts with the multiparametric design of the NOL monitor with an algorithm and an abstract index of 0-100. The SCA monitor system doesn't utilize heartrate and photoplethysmographic amplitude. Hypothetically making the device less susceptible to interference of intraoperative hemodynamic changes and intraoperative vasoactive medication administration in comparison with the NOL monitor which does utilizes these variables in its system and algorithm. Furthermore as the SCA monitor measures the direct burst of the palmary or plantary sympathetic nerves this could mean that it responds faster than the NOL index to nociceptive stimuli. The SCA monitor has already been studied in the unanesthetized and the sedated pediatric and neonatal population. But has not seen extensive validation during surgery under general anaesthesia. One small pilot study in the pediatric population under general anaesthesia has been performed. In this study only 12 patients were included, and these patients had a broad age range (8.4 ± 5 years) and received perioperative analgesia through means of continuous infusion of remifentanil. Furthermore the studies researchers did not use the recommended threshold value for the SCA monitor. Both monitors use different proprietary owned algorithms with the same aim of detecting nociception.

Therefore, the primary goal of this study is to evaluate the SCA in the pediatric population during general anaesthesia. As more extensive evaluation of the SCA in the pediatric population is imperative in order to assess if it the SCA can detect nociceptive stimuli during general anesthesia. Another primary objective of this study will be to compare the SCA with the NOL index during general anesthesia. Evaluation of SCA through this feasibility study and comparison with the NOL monitor at the same time, may answer the question of which monitor can better predict and monitor nociceptive stimulation in the perioperative period. This will be the basis for future interventional randomized studies to assess if perioperative monitoring of the analgesia level leads to improved post-operative outcomes. We hypothesize that the NOL monitor and SCA monitor will both be able to quantify nociceptive stimuli, and that the SCA monitor responds faster than the NOL monitor.

Another secondary aim of the current study is the comparison of the BIS to the algesimeters awakening index.

Previous studies have demonstrated that fluctuations in skin conductance with an increase of area under the skin conductance peaks curve while awakening from general anesthesia performs similar to the bispectral index (BIS) in the adult population during nociceptive stimuli.

Primary Objectives:

1. Evaluate if the SCA can detect nociceptive stimuli in children undergoing surgery with general anaesthesia.
2. Compare the response of the SCA to the response of the NOL monitor during surgery with general anaesthesia.

Secondary Objective(s):

1. Evaluate the response of the SCA and NOL to intraoperative opioid administration.
2. Evaluate the response of the SCA and NOL index to intraoperative administration of vasoactive medication.
3. Evaluate the response of the SCA and NOL to changes in mean arterial blood pressure (MAP, heartrate (HR) and respiratory rate (RR)
4. Comparison of the SCA awakening index to the BIS.
5. Comparison of the peak(maximum) values for NOL and SCA across both selected age groups (1-4 and 5-12)
6. Comparison of the reaction time of both monitors after nociceptive stimulation.
7. Compare the functionality of the NOL index and SCA monitor during general anesthesia and usage of localregional anesthesia.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Nociceptive Pain Anesthesia Pain

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

PROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Patients aged 1 to 4 years of age

Patients will be connected to the NOL monitor and the SCA monitor during surgery with general anaesthesia.

Connecting patients to both non-invasive monitors to observe and compare the monitor's capabilities.

Intervention Type DEVICE

All patients will be connected to the NOL monitor and the SCA monitor during general anesthesia.

Patients aged 5 to 12 years of age

Patients will be connected to the NOL monitor and the SCA monitor during surgery with general anaesthesia.

Connecting patients to both non-invasive monitors to observe and compare the monitor's capabilities.

Intervention Type DEVICE

All patients will be connected to the NOL monitor and the SCA monitor during general anesthesia.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Connecting patients to both non-invasive monitors to observe and compare the monitor's capabilities.

All patients will be connected to the NOL monitor and the SCA monitor during general anesthesia.

Intervention Type DEVICE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Male or female
* ASA I, ASA II and ASA III
* Aged 1 to 12 years old
* Scheduled to undergo elective surgery with general anaesthesia
* Written informed consent obtained from subject or/and subject's legal representatives.

* No free available limb to attach the probes to.

Exclusion Criteria

* Known allergy to the adhesive tape used in the sensors.
Minimum Eligible Age

1 Year

Maximum Eligible Age

12 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Radboud University Medical Center

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Radboudumc

Nijmegen, Gelderland, Netherlands

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Netherlands

References

Explore related publications, articles, or registry entries linked to this study.

Ledowski T. Objective monitoring of nociception: a review of current commercial solutions. Br J Anaesth. 2019 Aug;123(2):e312-e321. doi: 10.1016/j.bja.2019.03.024. Epub 2019 Apr 30.

Reference Type BACKGROUND
PMID: 31047645 (View on PubMed)

Sabourdin N, Constant I. Monitoring of analgesia level during general anesthesia in children. Curr Opin Anaesthesiol. 2022 Jun 1;35(3):367-373. doi: 10.1097/ACO.0000000000001141.

Reference Type BACKGROUND
PMID: 35671026 (View on PubMed)

Gan TJ. Poorly controlled postoperative pain: prevalence, consequences, and prevention. J Pain Res. 2017 Sep 25;10:2287-2298. doi: 10.2147/JPR.S144066. eCollection 2017.

Reference Type BACKGROUND
PMID: 29026331 (View on PubMed)

Ferland CE, Vega E, Ingelmo PM. Acute pain management in children: challenges and recent improvements. Curr Opin Anaesthesiol. 2018 Jun;31(3):327-332. doi: 10.1097/ACO.0000000000000579.

Reference Type BACKGROUND
PMID: 29432292 (View on PubMed)

Ben-Israel N, Kliger M, Zuckerman G, Katz Y, Edry R. Monitoring the nociception level: a multi-parameter approach. J Clin Monit Comput. 2013 Dec;27(6):659-68. doi: 10.1007/s10877-013-9487-9. Epub 2013 Jul 9.

Reference Type BACKGROUND
PMID: 23835792 (View on PubMed)

Klein Tank C, Himantono N, van Uitert A, Malagon I. Evaluation of the nociception level index in the pediatric population: An observational feasibility study. Paediatr Anaesth. 2023 Jun;33(6):495-496. doi: 10.1111/pan.14632. Epub 2023 Jan 22. No abstract available.

Reference Type BACKGROUND
PMID: 36645161 (View on PubMed)

Storm H. Changes in skin conductance as a tool to monitor nociceptive stimulation and pain. Curr Opin Anaesthesiol. 2008 Dec;21(6):796-804. doi: 10.1097/ACO.0b013e3283183fe4.

Reference Type BACKGROUND
PMID: 18997532 (View on PubMed)

Chemam S, Cailliau E, Bert D, Tavernier B, Constant I, Sabourdin N. Nociception level response to calibrated stimulations in children: First assessment of the nociception level index in pediatric anesthesia. Anaesth Crit Care Pain Med. 2023 Jun;42(3):101207. doi: 10.1016/j.accpm.2023.101207. Epub 2023 Mar 1.

Reference Type BACKGROUND
PMID: 36863410 (View on PubMed)

Storm H. Skin conductance and the stress response from heel stick in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2000 Sep;83(2):F143-7. doi: 10.1136/fn.83.2.f143.

Reference Type BACKGROUND
PMID: 10952711 (View on PubMed)

Harrison D, Boyce S, Loughnan P, Dargaville P, Storm H, Johnston L. Skin conductance as a measure of pain and stress in hospitalised infants. Early Hum Dev. 2006 Sep;82(9):603-8. doi: 10.1016/j.earlhumdev.2005.12.008. Epub 2006 Feb 28.

Reference Type BACKGROUND
PMID: 16507342 (View on PubMed)

Walas W, Halaba Z, Kubiaczyk A, Piotrowski A, Latka-Grot J, Szczapa T, Romul M, Maroszynska I, Malinowska E, Rutkowska M, Skrzypek M, Smigiel R. Skin conductance measurement for the assessment of analgosedation adequacy in infants treated with mechanical ventilation: A multicenter pilot study. Adv Clin Exp Med. 2020 Sep;29(9):1117-1121. doi: 10.17219/acem/126286.

Reference Type BACKGROUND
PMID: 32937040 (View on PubMed)

Karpe J, Misiolek A, Daszkiewicz A, Misiolek H. Objective assessment of pain-related stress in mechanically ventilated newborns based on skin conductance fluctuations. Anaesthesiol Intensive Ther. 2013 Jul-Sep;45(3):134-7. doi: 10.5603/AIT.2013.0028.

Reference Type BACKGROUND
PMID: 24092508 (View on PubMed)

Sabourdin N, Arnaout M, Louvet N, Guye ML, Piana F, Constant I. Pain monitoring in anesthetized children: first assessment of skin conductance and analgesia-nociception index at different infusion rates of remifentanil. Paediatr Anaesth. 2013 Feb;23(2):149-55. doi: 10.1111/pan.12071. Epub 2012 Nov 21.

Reference Type BACKGROUND
PMID: 23170802 (View on PubMed)

Storm H. "Pain monitoring in anesthetized children: first assessment of skin conductance and analgesia-nociception index at different infusion rates of remifentanil", recommended preset values for the skin conductance equipment was not used. Paediatr Anaesth. 2013 Aug;23(8):761-3. doi: 10.1111/pan.12203. No abstract available.

Reference Type BACKGROUND
PMID: 23822183 (View on PubMed)

Ledowski T, Paech MJ, Storm H, Jones R, Schug SA. Skin conductance monitoring compared with bispectral index monitoring to assess emergence from general anaesthesia using sevoflurane and remifentanil. Br J Anaesth. 2006 Aug;97(2):187-91. doi: 10.1093/bja/ael119. Epub 2006 May 23.

Reference Type BACKGROUND
PMID: 16720673 (View on PubMed)

Ledowski T, Bromilow J, Paech MJ, Storm H, Hacking R, Schug SA. Skin conductance monitoring compared with Bispectral Index to assess emergence from total i.v. anaesthesia using propofol and remifentanil. Br J Anaesth. 2006 Dec;97(6):817-21. doi: 10.1093/bja/ael278. Epub 2006 Oct 22.

Reference Type BACKGROUND
PMID: 17060330 (View on PubMed)

Davidson A, Skowno J. Neuromonitoring in paediatric anaesthesia. Curr Opin Anaesthesiol. 2019 Jun;32(3):370-376. doi: 10.1097/ACO.0000000000000732.

Reference Type BACKGROUND
PMID: 30893116 (View on PubMed)

Wang F, Zhang J, Yu J, Tian M, Cui X, Wu A. Variation of bispectral index in children aged 1-12 years under propofol anesthesia: an observational study. BMC Anesthesiol. 2019 Aug 7;19(1):145. doi: 10.1186/s12871-019-0815-6.

Reference Type BACKGROUND
PMID: 31390975 (View on PubMed)

Ziesenitz VC, Vaughns JD, Koch G, Mikus G, van den Anker JN. Pharmacokinetics of Fentanyl and Its Derivatives in Children: A Comprehensive Review. Clin Pharmacokinet. 2018 Feb;57(2):125-149. doi: 10.1007/s40262-017-0569-6.

Reference Type BACKGROUND
PMID: 28688027 (View on PubMed)

Edry R, Recea V, Dikust Y, Sessler DI. Preliminary Intraoperative Validation of the Nociception Level Index: A Noninvasive Nociception Monitor. Anesthesiology. 2016 Jul;125(1):193-203. doi: 10.1097/ALN.0000000000001130.

Reference Type BACKGROUND
PMID: 27171828 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

2023-16214

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.