The Effects Of Kiwifruit Consumption On Sleep Quality, Fatigue And BMI Of Saudi Adults
NCT ID: NCT05953324
Last Updated: 2023-07-20
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
26 participants
INTERVENTIONAL
2022-01-01
2022-04-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Effect of Naps on Decision Making of Residents.
NCT03225391
The Effect of Sleep Hygiene Training Implemented
NCT05957874
Impact of Intermittent Fasting on Sleep and Quality of Life
NCT06959069
Lifestyle Medicine Strategies for Combating Sleepiness and Fatigue in Professional Drivers
NCT05096130
Repeated Challenge of Insufficient Sleep: Endothelial Effects
NCT01523535
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The National Sleep Foundation recommends different sleep durations for individuals according to age. Adults aged between 18-64 years are recommended to sleep 7-9 h/day. In Saudi Arabia, 33.8% of adults sleep less than 7 hours, and this was shown in women more than men. In meta-analyses, short sleep duration has been associated with an increased risk of obesity. Sleep disruption has been shown to increase the risk of cancer, type 2 diabetes mellitus, cardiovascular disease and coronary heart disease. Furthermore, sleep disruption has been associated with an increased risk of mortality. Collectively, sleep disruption has detrimental economic and health consequences and identifying the factors that may improve it is a public health priority. Thus, using interventions to improve sleep quality may help reduce disease risk and occurrence.
Nutritional research studied the effects of micro and macronutrients and whole foods on sleep measures. Micronutrients studied in relation to sleep included tryptophan, zinc, B-vitamins and polyphenols. A recent systematic review explored the effects of macronutrient manipulation on sleep outcomes. Manipulating carbohydrate intake appeared to alter sleep outcomes in healthy individuals. Several food items were studied in relation to sleep outcomes including fish tart cherry juice and products and kiwi fruit. Despite these studies, nutritional advice that can be recommended for sleep hygiene is inconclusive due to limited interventional studies.
Recently, kiwifruit has gained interest in regards to sleep outcomes. This may be due to the potential mechanisms of kiwifruit on sleep. Kiwifruit contain melatonin which is important for regulating the circadian rhythms and sleep cycles. Another potential mechanism is the high content of polyphenols, antioxidants, flavonoids, carotenoids, and anthocyanins that may decrease oxidative stress in people with sleep disorders or poor sleep quality. Furthermore, polyphenols may influence sleep through their effects on circadian rhythms, clock gene expression, and peripheral clocks. Kiwifruits contain a protein named actinidin which is involved in precursors of neurochemicals required for sleep-wake regulation. In addition, kiwifruit is rich in folate and vitamin c which are essential in the metabolism of amino acids into neurochemicals. Regardless of the potential mechanisms of kiwifruit on sleep, only two interventional studies were conducted to explore this relationship. However, one study did not include a control group and the intervention period in another study was only 4 weeks.
Therefore, investigators designed the study with the purpose of replicating the study with a control group and a longer intervention period to investigate whether kiwi has beneficial properties on sleep. Investigators conducted a randomized, controlled trial addressing whether intake of kiwifruit would improve sleep parameters in a Saudi student population with poor sleep quality.
This study aims to 1) compare between sleep, fatigue and BMI in cases and controls at the start of the study and after 6 weeks in Saudi adults 2) Study the effects of kiwifruit consumption on sleep quality, fatigue, and BMI in Saudi adults.
Study Hypothesis: Kiwifruit intake may improve sleep quality, fatigue and decrease BMI
Materials and methods Study design: a pilot randomized controlled trial
Participants: The study included university students aged ≥ 18 years with poor sleep quality from Umm Al-Qura University, Makkah, Saudi Arabia. Ethical approval was obtained from the Biomedical Research Ethics Committee at Umm Al-Qura University. No. HAPO-02-K-012. This study was carried out in accordance with the principles of the Helsinki Declaration. Participants were recruited through email and several social media platforms including WhatsApp™ and Twitter™ by a flyer between January-February 2022. Participants were invited to a screening visit (30-45 minutes) at Umm Al-Qura University Nutrition clinic to assess eligibility. In the screening visit, researchers explained the study aims and provided participants with a consent form and a kiwifruit consumption diary if eligible.
Recruitment status: Completed
Questionnaires:
A questionnaire was created to be filled in by the participants in both visits. The questionnaire included a brief introduction and a consent statement "I agree to participate in this study. Before finishing the trial, I can freely and without consequences terminate my participation". In addition, it included demographic questions, sleep quality questionnaire (PSQI) and the Fatigue Severity Scale (FSS).
Sleep quality Sleep quality was assessed using the validated Pittsburgh Sleep Quality Index (PSQI), which is an 18-item questionnaire. Two language versions of the PSQI were used; English, and the Arabic version that was translated by 10 Arabic bilingual translators was used. The PSQI is a subjective measure that assesses seven factors of sleep: sleep quality, sleep latency, sleep duration, habitual sleep efficiency, sleep disturbances, use of sleep medication and daytime dysfunction. Each dimension scored between 0-3, with a total score ranging from 0-21. Higher scores indicate lower sleep quality. A global PSQI score higher than 5 points indicates poor sleep quality. Moreover, to analyze variables not considered by the PSQI, investigators included in the survey questions of stability of participants usual sleep/wake patterns and if they differ on weekends and how often they had naps.
The Fatigue Severity Scale (FSS) Fatigue was assessed using the Fatigue Severity Scale (FSS) which is a self-administered questionnaire with 9 items (questions) investigating the severity of fatigue in different situations during the past week. Grading of each item ranges from 1 to 7, where 1 indicates strong disagreement and 7 strong agreements, and the final score represents the mean value of the 9 items. The researchers independently translated the original version of the questionnaire from English to Arabic. Prior to use in this study, the questionnaire was initially administered to 10 bilingual subjects, who completed both the Arabic version and the English version to determine the test-retest reliability. Fatigue was independent of the version.
Study intervention Eligible participants were randomly assigned to either a non-kiwifruit feeding group (controls) or consumed two medium-size kiwifruit group \[21\] (cases) 1 hour before bedtime every night for 6 weeks (42 days in total). Randomization was performed by giving participants a note identifying the condition to which they were randomized; the note was placed in a sealed envelope. Blindness was not applicable since cases received kiwifruit and controls did not receive. Total number of kiwis consumed should be (14 kiwis (number of kiwis in one week) x 6 (number of weeks) = 84 kiwis in total. Participants consuming the kiwifruit were asked to keep a diary to record if they consumed them every day. During the 6-week intervention period, participants received their kiwifruit every week on the first day of the week (Sunday) that is adequate for a week (14 kiwi fruits brand name: Sharbatly Co. Ltd, variety: Hayward, country of origin: Italy). The kiwifruits were supplied at optimum ripeness for consumption and were instructed to keep the kiwi in the fridge to prevent damage.
Anthropometric measurements Participants' weight and height were measured via (GIMA Pegaso Digital Scale) on both visits to calculate their body mass index (BMI). WHO guidelines were used to take physical measurements of participants and BMI categorization was based on WHO.
Statistical Analysis Data analysis was performed using Statistical Package for the Social Sciences, SPSS 23rd version. Frequency and percentages were used to display categorical variables. Mean and standard deviation were used to present numerical variables. The Shapiro-Wilk test was used to test normality. Independent t-test and paired t-test were used to test associations for normally distributed variables (age, duration of nap, BMI at both start and end of the study, fatigue score at both start and end of the study, PSQI at end of the study). While the Mann-Whitney U test and Wilcoxon Signed-Rank test were used for non-normally distributed variables (PSQI at start of the study). Pearson's correlation was also used to test for associations between numerical variables. The level of significance was set at 0.05.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Cases
consumed two medium-size kiwifruit group \[21\] (cases) 1 hour before bedtime every night for 6 weeks (42 days in total).Randomization was performed by giving participants a note identifying the condition to which they were randomized; the note was placed in a sealed envelope. Blindness was not applicable since cases received kiwifruit and controls did not receive. Total number of kiwis consumed should be (14 kiwis (number of kiwis in one week) x 6 (number of weeks) = 84 kiwis in total. Participants consuming the kiwifruit were asked to keep a diary to record if they consumed them every day. During the 6-week intervention period, participants received their kiwifruit every week on the first day of the week (Sunday) that is adequate for a week (14 kiwi fruits brand name: Sharbatly Co. Ltd, variety: Hayward, country of origin: Italy). The kiwifruits were supplied at optimum ripeness for consumption and were instructed to keep the kiwi in the fridge to prevent damage.
Kiwifruit
2 kiwifruit for 6 weeks
Controls
Had poor sleep quality however did not consume kiwifruit
No interventions assigned to this group
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Kiwifruit
2 kiwifruit for 6 weeks
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* have poor sleep quality that was assessed in the screening visit by the PSQI (a score of at least 5)
Exclusion Criteria
* lactating
* participants with any chronic diseases such as cardiovascular or neurological diseases
* has a history of using herbal or medications for inducing sleep for the last two months
18 Years
40 Years
FEMALE
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Umm Al-Qura University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Essra Noorwali
Assistant Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Essra Noorwali, PhD
Role: PRINCIPAL_INVESTIGATOR
Umm Al-Qura University
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Umm Al-Qura University
Mecca, , Saudi Arabia
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Noorwali E, Hardie L, Cade J. Bridging the Reciprocal Gap between Sleep and Fruit and Vegetable Consumption: A Review of the Evidence, Potential Mechanisms, Implications, and Directions for Future Work. Nutrients. 2019 Jun 19;11(6):1382. doi: 10.3390/nu11061382.
Hafner M, Stepanek M, Taylor J, Troxel WM, van Stolk C. Why Sleep Matters-The Economic Costs of Insufficient Sleep: A Cross-Country Comparative Analysis. Rand Health Q. 2017 Jan 1;6(4):11. eCollection 2017 Jan.
Bahammam AS. Sleep medicine in Saudi Arabia: Current problems and future challenges. Ann Thorac Med. 2011 Jan;6(1):3-10. doi: 10.4103/1817-1737.74269.
Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O, DonCarlos L, Hazen N, Herman J, Katz ES, Kheirandish-Gozal L, Neubauer DN, O'Donnell AE, Ohayon M, Peever J, Rawding R, Sachdeva RC, Setters B, Vitiello MV, Ware JC, Adams Hillard PJ. National Sleep Foundation's sleep time duration recommendations: methodology and results summary. Sleep Health. 2015 Mar;1(1):40-43. doi: 10.1016/j.sleh.2014.12.010. Epub 2015 Jan 8.
Ahmed AE, Al-Jahdali F, AlALwan A, Abuabat F, Bin Salih SA, Al-Harbi A, Baharoon S, Khan M, Ali YZ, Al-Jahdali H. Prevalence of sleep duration among Saudi adults. Saudi Med J. 2017 Mar;38(3):276-283. doi: 10.15537/smj.2017.3.17101.
Itani O, Jike M, Watanabe N, Kaneita Y. Short sleep duration and health outcomes: a systematic review, meta-analysis, and meta-regression. Sleep Med. 2017 Apr;32:246-256. doi: 10.1016/j.sleep.2016.08.006. Epub 2016 Aug 26.
Bacaro V, Ballesio A, Cerolini S, Vacca M, Poggiogalle E, Donini LM, Lucidi F, Lombardo C. Sleep duration and obesity in adulthood: An updated systematic review and meta-analysis. Obes Res Clin Pract. 2020 Jul-Aug;14(4):301-309. doi: 10.1016/j.orcp.2020.03.004. Epub 2020 Jun 8.
Ma QQ, Yao Q, Lin L, Chen GC, Yu JB. Sleep duration and total cancer mortality: a meta-analysis of prospective studies. Sleep Med. 2016 Nov-Dec;27-28:39-44. doi: 10.1016/j.sleep.2016.06.036. Epub 2016 Nov 1.
Erren TC, Morfeld P, Foster RG, Reiter RJ, Gross JV, Westermann IK. Sleep and cancer: Synthesis of experimental data and meta-analyses of cancer incidence among some 1,500,000 study individuals in 13 countries. Chronobiol Int. 2016;33(4):325-50. doi: 10.3109/07420528.2016.1149486. Epub 2016 Mar 22.
Kwok CS, Kontopantelis E, Kuligowski G, Gray M, Muhyaldeen A, Gale CP, Peat GM, Cleator J, Chew-Graham C, Loke YK, Mamas MA. Self-Reported Sleep Duration and Quality and Cardiovascular Disease and Mortality: A Dose-Response Meta-Analysis. J Am Heart Assoc. 2018 Aug 7;7(15):e008552. doi: 10.1161/JAHA.118.008552.
da Silva AA, de Mello RG, Schaan CW, Fuchs FD, Redline S, Fuchs SC. Sleep duration and mortality in the elderly: a systematic review with meta-analysis. BMJ Open. 2016 Feb 17;6(2):e008119. doi: 10.1136/bmjopen-2015-008119.
Liu TZ, Xu C, Rota M, Cai H, Zhang C, Shi MJ, Yuan RX, Weng H, Meng XY, Kwong JS, Sun X. Sleep duration and risk of all-cause mortality: A flexible, non-linear, meta-regression of 40 prospective cohort studies. Sleep Med Rev. 2017 Apr;32:28-36. doi: 10.1016/j.smrv.2016.02.005. Epub 2016 Mar 3.
Binks H, E Vincent G, Gupta C, Irwin C, Khalesi S. Effects of Diet on Sleep: A Narrative Review. Nutrients. 2020 Mar 27;12(4):936. doi: 10.3390/nu12040936.
Du C, Almotawa J, Feldpausch CE, Folk SYL, Parag H, Tucker RM. Effects of macronutrient intake on sleep duration and quality: A systematic review. Nutr Diet. 2022 Feb;79(1):59-75. doi: 10.1111/1747-0080.12671. Epub 2021 Apr 19.
Hansen AL, Dahl L, Olson G, Thornton D, Graff IE, Froyland L, Thayer JF, Pallesen S. Fish consumption, sleep, daily functioning, and heart rate variability. J Clin Sleep Med. 2014 May 15;10(5):567-75. doi: 10.5664/jcsm.3714.
Garrido M, Espino J, González-Gómez D, et al.: A nutraceutical product based on Jerte Valley cherries improves sleep and augments the antioxidant status in humans. e-SPEN. 2009, 4:. 10.1016/j.eclnm.2009.09.003
Garrido M, Paredes SD, Cubero J, Lozano M, Toribio-Delgado AF, Munoz JL, Reiter RJ, Barriga C, Rodriguez AB. Jerte Valley cherry-enriched diets improve nocturnal rest and increase 6-sulfatoxymelatonin and total antioxidant capacity in the urine of middle-aged and elderly humans. J Gerontol A Biol Sci Med Sci. 2010 Sep;65(9):909-14. doi: 10.1093/gerona/glq099. Epub 2010 Jun 13.
Pigeon WR, Carr M, Gorman C, Perlis ML. Effects of a tart cherry juice beverage on the sleep of older adults with insomnia: a pilot study. J Med Food. 2010 Jun;13(3):579-83. doi: 10.1089/jmf.2009.0096.
Howatson G, Bell PG, Tallent J, Middleton B, McHugh MP, Ellis J. Effect of tart cherry juice (Prunus cerasus) on melatonin levels and enhanced sleep quality. Eur J Nutr. 2012 Dec;51(8):909-16. doi: 10.1007/s00394-011-0263-7. Epub 2011 Oct 30.
Lin HH, Tsai PS, Fang SC, Liu JF. Effect of kiwifruit consumption on sleep quality in adults with sleep problems. Asia Pac J Clin Nutr. 2011;20(2):169-74.
Nødtvedt ØO, Hansen AL, Bjorvatn B, Pallesen S: The effects of kiwi fruit consumption in students with chronic insomnia symptoms: a randomized controlled trial. Sleep Biol Rhythms. 2017, 15:. 10.1007/s41105-017-0095-9
Kanon A., Balan P, McNabb W., Roy N., Chow C., Henare S.: Kiwifruit: sleep superfood? - A study methodology. J Sleep Res. 2019, 28:. 10.1111/JSR.52_12913
Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kaneko R, Hara M, Suzuki T, Reiter RJ. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int. 1995 Mar;35(3):627-34.
Arnao MB, Hernandez-Ruiz J. The physiological function of melatonin in plants. Plant Signal Behav. 2006 May;1(3):89-95. doi: 10.4161/psb.1.3.2640.
Sedov ID, Cameron EE, Madigan S, Tomfohr-Madsen LM. Sleep quality during pregnancy: A meta-analysis. Sleep Med Rev. 2018 Apr;38:168-176. doi: 10.1016/j.smrv.2017.06.005. Epub 2017 Jun 15.
Demirci JR, Braxter BJ, Chasens ER. Breastfeeding and short sleep duration in mothers and 6-11-month-old infants. Infant Behav Dev. 2012 Dec;35(4):884-6. doi: 10.1016/j.infbeh.2012.06.005. Epub 2012 Sep 23.
Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989 May;28(2):193-213. doi: 10.1016/0165-1781(89)90047-4.
Suleiman KH, Yates BC, Berger AM, Pozehl B, Meza J. Translating the Pittsburgh Sleep Quality Index into Arabic. West J Nurs Res. 2010 Mar;32(2):250-68. doi: 10.1177/0193945909348230. Epub 2009 Nov 14.
Valko PO, Bassetti CL, Bloch KE, Held U, Baumann CR. Validation of the fatigue severity scale in a Swiss cohort. Sleep. 2008 Nov;31(11):1601-7. doi: 10.1093/sleep/31.11.1601.
Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser. 1995;854:1-452.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol, Statistical Analysis Plan, and Informed Consent Form
Related Links
Access external resources that provide additional context or updates about the study.
WHO: A healthy lifestyle - WHO recommendations
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
HAPO-02-K-012-2021-11-866
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.