Study on Preliminary Safety and Efficacy of the ARC Therapy Using the ARC-IM Lumbar System to Support Mobility in People With Chronic Spinal Cord Injury (BoxSwitch)
NCT ID: NCT05942339
Last Updated: 2025-12-11
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
8 participants
INTERVENTIONAL
2023-08-30
2027-08-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Preliminary safety and efficacy will be assessed in both the short term and throughout the duration of the study (from the surgery to 36 months after the implantation of the ARC-IM Lumbar system).
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Evaluation of an 3D Imaging Intensifier Coupled to a Navigation Station in the Surgery of the Spine and Pelvis
NCT01335841
MLX/XLX ACR Expandable Lumbar Interbody Implants
NCT04420143
Comparing 3D and 2D Views in Biportal Spine Surgery: A Pilot Simulation Study
NCT07171801
Spinal Cord Stimulation for Low Back Pain
NCT00205868
Impact of Subcutaneous Electric Lumbar Stimulation on Treatment of Refractory Chronic and Disabling Lumbago
NCT02988830
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The study will take place at the CHUV (Lausanne, Switzerland). A maximum of 8 participants will be enrolled in the study and implanted with an ARC-IM IPG. Patients who previously received an implantation in international studies for continuous electrical stimulation can enroll in the current BoxSwitch study. Replacement of their currently implanted IPG and lead will be assessed on a case-by-case manner considering current status of their implanted devices, technical and surgical compatibility with the newly proposed ARC-IM Lumbar system components.
The study intervention consists of several phases preceded by pre-screening:
Screening and enrollment, baseline and pre-implantation assessments, surgery, optimization phase, short-term assessments, independent use phase and follow-up assessments at months 12, 24 and 36. Measures will be performed before surgical intervention and at regular intervals during the study.
The total duration of the study will be approximately 48 months (up to 36 months/participant).
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Targeted Epidural Spinal Stimulation
Single arm study: the participants who have previously received a spinal array and an implantable pulse generator either through the STIMO study or similar studies conducted abroad will be proposed to exchange their currently implanted system with selected components from the ARC-IM Lumbar system.
After the surgery, the participants will perform around 20 optimization sessions that may include rehabilitation to configure the neuromodulation system. Then the participants will use the ARC-IM Lumbar system independently during daily life activities until the end of the 36 months post-surgery. Assessments will be planned throughout the course of the study at the end of the optimization phase, after 12 and 24 months post-surgery and at the end of the study, with and/or stimulation.
Procedure/Surgery
The intervention involves the replacement of parts of the current implanted system with components of the ARC-IM Lumbar system.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Procedure/Surgery
The intervention involves the replacement of parts of the current implanted system with components of the ARC-IM Lumbar system.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Age 18-65
3. SCI graded as American Spinal Injury Association Impairment Scale (AIS) A, B, C \& D
4. SCI ≥ 12months
5. SCI lesion level T10 and above with preservation of conus function
6. SCI due to trauma
7. Stable medical, physical and psychological condition as considered by the investigators
8. Able to understand and interact with the study team in French or English
9. Agrees to comply in good faith with all conditions of the study and to attend all scheduled appointments
10. Must provide and sign the Informed Consent prior to any study-related procedures
Exclusion Criteria
2. History of myocardial infarction or cerebrovascular event within the past 6 months
3. Limitation of walking function based on accompanying (CNS) disorders (systemic malignant disorders, cardiovascular disorders restricting physical training, peripheral nerve disorders)
4. Any active implanted cardiac device such as pacemaker or defibrillator
5. Any indication that would require diathermy
6. Any indication that would require MRI
7. Any anatomical limitations in the implantation area as judged by the investigators
8. Other conditions that would make the subject unable to participate in testing in the judgement of the investigators
9. Clinically significant mental illness in the judgement of the investigators
10. Presence of indwelling baclofen or insulin pump
11. Other clinically significant concomitant disease states (e.g., renal failure, hepatic dysfunction, cardiovascular disease, etc.)
12. Inability to follow the procedures of the study, e.g. due to language problems, psychological disorders, or dementia of the participant
13. Enrolment of the investigator, his/her family members, employees, and other dependent persons
14. Women who are pregnant (pregnancy test obligatory for women of childbearing potential) or breastfeeding
18 Years
65 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Ecole Polytechnique Fédérale de Lausanne
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Jocelyne Bloch
Professor, Neurosurgeon
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Jocelyne Bloch, MD
Role: PRINCIPAL_INVESTIGATOR
CHUV
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
CHUV
Lausanne, Canton of Vaud, Switzerland
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
Jocelyne Dr Bloch, Prof. Dr.
Role: primary
References
Explore related publications, articles, or registry entries linked to this study.
Anderson KD. Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma. 2004 Oct;21(10):1371-83. doi: 10.1089/neu.2004.21.1371.
Cragg JJ, Noonan VK, Krassioukov A, Borisoff J. Cardiovascular disease and spinal cord injury: results from a national population health survey. Neurology. 2013 Aug 20;81(8):723-8. doi: 10.1212/WNL.0b013e3182a1aa68. Epub 2013 Jul 24.
West CR, Phillips AA, Squair JW, Williams AM, Walter M, Lam T, Krassioukov AV. Association of Epidural Stimulation With Cardiovascular Function in an Individual With Spinal Cord Injury. JAMA Neurol. 2018 May 1;75(5):630-632. doi: 10.1001/jamaneurol.2017.5055.
Brinkhof MW, Al-Khodairy A, Eriks-Hoogland I, Fekete C, Hinrichs T, Hund-Georgiadis M, Meier S, Scheel-Sailer A, Schubert M, Reinhardt JD; SwiSCI Study Group. Health conditions in people with spinal cord injury: Contemporary evidence from a population-based community survey in Switzerland. J Rehabil Med. 2016 Feb;48(2):197-209. doi: 10.2340/16501977-2039.
Krassioukov A, Eng JJ, Warburton DE, Teasell R; Spinal Cord Injury Rehabilitation Evidence Research Team. A systematic review of the management of orthostatic hypotension after spinal cord injury. Arch Phys Med Rehabil. 2009 May;90(5):876-85. doi: 10.1016/j.apmr.2009.01.009.
Formento E, Minassian K, Wagner F, Mignardot JB, Le Goff-Mignardot CG, Rowald A, Bloch J, Micera S, Capogrosso M, Courtine G. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nat Neurosci. 2018 Dec;21(12):1728-1741. doi: 10.1038/s41593-018-0262-6. Epub 2018 Oct 31.
Phillips AA, Krassioukov AV. Contemporary Cardiovascular Concerns after Spinal Cord Injury: Mechanisms, Maladaptations, and Management. J Neurotrauma. 2015 Dec 15;32(24):1927-42. doi: 10.1089/neu.2015.3903. Epub 2015 Sep 1.
Kathe C, Skinnider MA, Hutson TH, Regazzi N, Gautier M, Demesmaeker R, Komi S, Ceto S, James ND, Cho N, Baud L, Galan K, Matson KJE, Rowald A, Kim K, Wang R, Minassian K, Prior JO, Asboth L, Barraud Q, Lacour SP, Levine AJ, Wagner F, Bloch J, Squair JW, Courtine G. The neurons that restore walking after paralysis. Nature. 2022 Nov;611(7936):540-547. doi: 10.1038/s41586-022-05385-7. Epub 2022 Nov 9.
Claydon VE, Steeves JD, Krassioukov A. Orthostatic hypotension following spinal cord injury: understanding clinical pathophysiology. Spinal Cord. 2006 Jun;44(6):341-51. doi: 10.1038/sj.sc.3101855. Epub 2005 Nov 22.
Skinnider MA, Squair JW, Kathe C, Anderson MA, Gautier M, Matson KJE, Milano M, Hutson TH, Barraud Q, Phillips AA, Foster LJ, La Manno G, Levine AJ, Courtine G. Cell type prioritization in single-cell data. Nat Biotechnol. 2021 Jan;39(1):30-34. doi: 10.1038/s41587-020-0605-1. Epub 2020 Jul 20.
Squair JW, Skinnider MA, Gautier M, Foster LJ, Courtine G. Prioritization of cell types responsive to biological perturbations in single-cell data with Augur. Nat Protoc. 2021 Aug;16(8):3836-3873. doi: 10.1038/s41596-021-00561-x. Epub 2021 Jun 25.
Squair JW, Gautier M, Kathe C, Anderson MA, James ND, Hutson TH, Hudelle R, Qaiser T, Matson KJE, Barraud Q, Levine AJ, La Manno G, Skinnider MA, Courtine G. Confronting false discoveries in single-cell differential expression. Nat Commun. 2021 Sep 28;12(1):5692. doi: 10.1038/s41467-021-25960-2.
Gill M, Linde M, Fautsch K, Hale R, Lopez C, Veith D, Calvert J, Beck L, Garlanger K, Edgerton R, Sayenko D, Lavrov I, Thoreson A, Grahn P, Zhao K. Epidural Electrical Stimulation of the Lumbosacral Spinal Cord Improves Trunk Stability During Seated Reaching in Two Humans With Severe Thoracic Spinal Cord Injury. Front Syst Neurosci. 2020 Nov 19;14:79. doi: 10.3389/fnsys.2020.569337. eCollection 2020.
Grindberg RV, Yee-Greenbaum JL, McConnell MJ, Novotny M, O'Shaughnessy AL, Lambert GM, Arauzo-Bravo MJ, Lee J, Fishman M, Robbins GE, Lin X, Venepally P, Badger JH, Galbraith DW, Gage FH, Lasken RS. RNA-sequencing from single nuclei. Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19802-7. doi: 10.1073/pnas.1319700110. Epub 2013 Nov 18.
Lake BB, Ai R, Kaeser GE, Salathia NS, Yung YC, Liu R, Wildberg A, Gao D, Fung HL, Chen S, Vijayaraghavan R, Wong J, Chen A, Sheng X, Kaper F, Shen R, Ronaghi M, Fan JB, Wang W, Chun J, Zhang K. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science. 2016 Jun 24;352(6293):1586-90. doi: 10.1126/science.aaf1204.
Maniatis S, Aijo T, Vickovic S, Braine C, Kang K, Mollbrink A, Fagegaltier D, Andrusivova Z, Saarenpaa S, Saiz-Castro G, Cuevas M, Watters A, Lundeberg J, Bonneau R, Phatnani H. Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. Science. 2019 Apr 5;364(6435):89-93. doi: 10.1126/science.aav9776.
Stahl PL, Salmen F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, Giacomello S, Asp M, Westholm JO, Huss M, Mollbrink A, Linnarsson S, Codeluppi S, Borg A, Ponten F, Costea PI, Sahlen P, Mulder J, Bergmann O, Lundeberg J, Frisen J. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016 Jul 1;353(6294):78-82. doi: 10.1126/science.aaf2403.
Asboth L, Friedli L, Beauparlant J, Martinez-Gonzalez C, Anil S, Rey E, Baud L, Pidpruzhnykova G, Anderson MA, Shkorbatova P, Batti L, Pages S, Kreider J, Schneider BL, Barraud Q, Courtine G. Cortico-reticulo-spinal circuit reorganization enables functional recovery after severe spinal cord contusion. Nat Neurosci. 2018 Apr;21(4):576-588. doi: 10.1038/s41593-018-0093-5. Epub 2018 Mar 19.
Mignardot JB, Le Goff CG, van den Brand R, Capogrosso M, Fumeaux N, Vallery H, Anil S, Lanini J, Fodor I, Eberle G, Ijspeert A, Schurch B, Curt A, Carda S, Bloch J, von Zitzewitz J, Courtine G. A multidirectional gravity-assist algorithm that enhances locomotor control in patients with stroke or spinal cord injury. Sci Transl Med. 2017 Jul 19;9(399):eaah3621. doi: 10.1126/scitranslmed.aah3621.
Wagner FB, Mignardot JB, Le Goff-Mignardot CG, Demesmaeker R, Komi S, Capogrosso M, Rowald A, Seanez I, Caban M, Pirondini E, Vat M, McCracken LA, Heimgartner R, Fodor I, Watrin A, Seguin P, Paoles E, Van Den Keybus K, Eberle G, Schurch B, Pralong E, Becce F, Prior J, Buse N, Buschman R, Neufeld E, Kuster N, Carda S, von Zitzewitz J, Delattre V, Denison T, Lambert H, Minassian K, Bloch J, Courtine G. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018 Nov;563(7729):65-71. doi: 10.1038/s41586-018-0649-2. Epub 2018 Oct 31.
Phillips AA, Krassioukov AV, Ainslie PN, Warburton DE. Baroreflex function after spinal cord injury. J Neurotrauma. 2012 Oct 10;29(15):2431-45. doi: 10.1089/neu.2012.2507. Epub 2012 Sep 20.
Rowald A, Komi S, Demesmaeker R, Baaklini E, Hernandez-Charpak SD, Paoles E, Montanaro H, Cassara A, Becce F, Lloyd B, Newton T, Ravier J, Kinany N, D'Ercole M, Paley A, Hankov N, Varescon C, McCracken L, Vat M, Caban M, Watrin A, Jacquet C, Bole-Feysot L, Harte C, Lorach H, Galvez A, Tschopp M, Herrmann N, Wacker M, Geernaert L, Fodor I, Radevich V, Van Den Keybus K, Eberle G, Pralong E, Roulet M, Ledoux JB, Fornari E, Mandija S, Mattera L, Martuzzi R, Nazarian B, Benkler S, Callegari S, Greiner N, Fuhrer B, Froeling M, Buse N, Denison T, Buschman R, Wende C, Ganty D, Bakker J, Delattre V, Lambert H, Minassian K, van den Berg CAT, Kavounoudias A, Micera S, Van De Ville D, Barraud Q, Kurt E, Kuster N, Neufeld E, Capogrosso M, Asboth L, Wagner FB, Bloch J, Courtine G. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nat Med. 2022 Feb;28(2):260-271. doi: 10.1038/s41591-021-01663-5. Epub 2022 Feb 7.
Capogrosso M, Wenger N, Raspopovic S, Musienko P, Beauparlant J, Bassi Luciani L, Courtine G, Micera S. A computational model for epidural electrical stimulation of spinal sensorimotor circuits. J Neurosci. 2013 Dec 4;33(49):19326-40. doi: 10.1523/JNEUROSCI.1688-13.2013.
Greiner N, Barra B, Schiavone G, Lorach H, James N, Conti S, Kaeser M, Fallegger F, Borgognon S, Lacour S, Bloch J, Courtine G, Capogrosso M. Recruitment of upper-limb motoneurons with epidural electrical stimulation of the cervical spinal cord. Nat Commun. 2021 Jan 19;12(1):435. doi: 10.1038/s41467-020-20703-1.
Moraud EM, Capogrosso M, Formento E, Wenger N, DiGiovanna J, Courtine G, Micera S. Mechanisms Underlying the Neuromodulation of Spinal Circuits for Correcting Gait and Balance Deficits after Spinal Cord Injury. Neuron. 2016 Feb 17;89(4):814-28. doi: 10.1016/j.neuron.2016.01.009. Epub 2016 Feb 4.
Minassian K, Hofstoetter U, Tansey K, Mayr W. Neuromodulation of lower limb motor control in restorative neurology. Clin Neurol Neurosurg. 2012 Jun;114(5):489-97. doi: 10.1016/j.clineuro.2012.03.013. Epub 2012 Mar 29.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
BOX2023
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.