Understanding and Anticipating Therapeutic Response And Immuno-meDIated Adverse Events in Anti-cancer Immune-checkpoint Inhibition: a Tissue Biopsy Based imaGing Study
NCT ID: NCT05921123
Last Updated: 2024-01-26
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
200 participants
OBSERVATIONAL
2023-11-25
2024-11-25
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
In-depth identification of cell subpopulations within the tumor microenvironment, as well as the infiltrate within the irAEs targeted tissues, would allow the identification of new predictive factors of response and toxicity, which could be used in clinical practice at the time of diagnosis. A better understanding of immuno-mediated toxicities would allow to adapt their management, which is currently based on the inflammatory diseases they mimic. The Hyperion technology is an innovative mass cytometry imaging system, allowing the simultaneous analysis of nearly 40 markers within a tissue.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Quality of Life and Physical Fitness After Immune Checkpoint Inhibitors
NCT03946007
Study of Alterations in Tumor Metabolism Associated With the Development of Immunotherapy Resistance in Melanoma
NCT05307289
Immune Profiles Evolution Under Immunotherapy for Melanoma
NCT04576429
Profiling of Circulating Immune Cells to Uncover Response Signatures to Anti-PD1 Immunotherapy in Melanoma Patients
NCT06154668
Power of Liquid Biopsy Tracking in Immunotherapy Treated Stage IV Melanoma
NCT06710093
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
1. Tissue players involved in the anti-tumour response to ICI. Predicting the response to ICI, both before the start of treatment and during the first few months, remains a real challenge, particularly in view of the possibility of pseudo-progression during the first few weeks of treatment. This question is nevertheless of vital importance, as the indications for these molecules continue to expand, with new prospects for their combination with chemotherapies or targeted therapies. The correlation between the tumour immune microenvironment and response to ICI is relatively little studied in digestive cancers, such as gastric cancer, where contradictory data exist, particularly on the prognostic value of intra-tumour lymphocytes (TILs), which may be intra-tumour or present in the stroma. Intratumoral regulatory T cells may have a negative effect on responses to ICI, in contrast to intratumoral CD8+ T cells, with a possible prognostic impact of the regulatory T cells/T cell CD8+ ratio. In contrast, the stromal infiltrate of regulatory T cells could have a positive effect. A high infiltrate of anti-tumour M2 macrophages has been associated with poorer survival in several solid cancers, in contrast to M1 macrophages in gastric cancer. In hepatocellular carcinoma, PDL1 expression by tumour cells is low and heterogeneous, but PDL1 expression by host cells, such as innate immune cells, can inhibit the cytotoxic activity of CD8+ T cells. The role of M1 macrophages remains unclear.
2. Tissue players involved in immune-mediated toxicities. By inhibiting the immune system's natural checkpoints, ICI increase the anti-tumour response, but this also leads to a loss of peripheral tolerance mechanisms and therefore to the appearance of immuno-induced side-effects (irAEs), which can affect all organs and mimic genuine autoimmune diseases. Depending on the ICI used, the type and frequency of irAEs differ, with a frequency of up to 70% for anti-PD-(L)-1 and up to 90% for anti-CTLA-4. The digestive tract is the second most frequently affected organ after the skin, with the occurrence of immuno-induced diarrhoea and colitis, sharing macroscopic features with Crohn's disease. Approximately 6% of patients may present with rheumatological involvement, with a variety of phenotypes, most often mimicking polyarthritis, polymyalgia rheumatica (PMR) or oligoarthritis of the large joints. Several hypotheses have been put forward to explain the appearance of irAEs, most of which are based on the T cell effector due to the mechanism of action of ICI. The hypothesis of cross-reactivity between a tumour antigen and a self antigen has been put forward to explain the occurrence of irAEs, as for example in cases of vitiligo occurring under immunotherapy in metastatic melanomas, with antigens shared between tumour and non-tumour melanocytes. The role of regulatory T cells (Tregs) has also been suggested. The level of circulating IL17 at the initiation of ICI has also been associated with the risk of colitis. Two recent studies have investigated synovial biopsies from immune-induced arthritis using immunohistochemistry and flow cytometry techniques after disaggregation. The first revealed the presence of memory T cells and macrophages, and demonstrated the production of TNF alpha. The other found T cells, with CD4 slightly over-represented compared with CD8, and B cells in equivalent proportion, as well as macrophages. However, no study has ever accurately characterised the inflammatory infiltrate, either within the articular synovium or within the digestive mucosa, via the simultaneous study of numerous markers, with a spatial dimension. Nor has this been done in the skin in the case of cutaneous toxicity of ICI, or in the salivary glands in the case of immuno-induced dry syndrome, for example.
3. Hyperion technology. The Hyperion imaging technology is an innovative technology within the LBAI research unit (UMR1227) in Brest, enabling the expression of 37 markers to be assessed on a tissue slide, and thus the sub-populations of immune cells within a tissue to be quantified precisely, at cellular and sub-cellular level with a resolution of 1 µm2.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
RETROSPECTIVE
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Treated by Immune checkpoint inhibitor (ICI) for an advanced cancer
* Treated at Brest University-Hospital, Morlaix Hospital, Quimper Hospital, Clinique Pasteur in Brest or Bordeaux University Hospital
* With a tumor or tissue biopsy (organ target of irAEs) archived in sufficient quantity for Hyperion analysis
* For the control group: patient with an inflammatory disease (autoimmune, autoinflammatory) who had a biopsy at diagnosis
Exclusion Criteria
* Refusal to participate
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University Hospital, Brest
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Brest University Hospital
Brest, , France
Countries
Review the countries where the study has at least one active or historical site.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
29BRC22.0219 (TADIG-R)
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.