A SMART Trial of Adaptive Exercises to Optimize Aerobic-Fitness Responses
NCT ID: NCT05877196
Last Updated: 2025-04-22
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
216 participants
INTERVENTIONAL
2023-06-22
2028-06-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
* test the effects of aerobic exercise on aerobic fitness, white matter hyperintensity (WMH) volume, and patient-centered outcomes;
* identify the best exercise to improve aerobic fitness and reduce non-responses over 6 months; and
* examines the mechanisms of aerobic exercise's action on memory in older adults with early AD.
Participants will receive 6 months of supervised exercise, undergo cognitive data collection and exercise testing 5 times over a year span, have an MRI brain scan 3 times over a one-year span, and have monthly follow-up discussions on health and wellness.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Cognitive Effects of Aerobic Exercise for MCI Adults
NCT00220467
Exercise in Adults With Mild Memory Problems
NCT02814526
Exercise Treatment of Mild-Stage Probable Alzheimer's Disease
NCT00403507
Aerobic Exercise for Older Adults at Increased Risk of Alzheimer's Disease and Related Dementias
NCT03035851
Genes, Exercise, Memory and Neurodegeneration
NCT01021644
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
SEQUENTIAL
TREATMENT
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Moderate Intensity Continuous Training (MICT)
Cycling on recumbent stationary cycle at moderate intensity for 30-50 minutes, 3 times per week for 3-6 months
Moderate Intensity Continuous Training (MICT)
Aerobic cycling at a moderate intensity (50-75% of heart rate reserve) for 30-50 minutes, 3 times per week for 3-6 months.
Chair-based Stretch
Stretching at low intensity for 30-50 minutes, 3 times per week for 6 months
Chair-based Stretch
Stretching while seated for 30-50 minutes, 3 times per week for 6 months.
High-Intensity Interval Training (HIIT)
MICT for 3 months, and then cycling on recumbent stationary cycle at alternate high and moderate intensity for 40 minutes, 3 times per week for 3 months.
High-Intensity Interval Training (HIIT)
Aerobic cycling at a vigorous intensity (80-90% of heart rate reserve 4-minute bouts with 4-minute recovery intervals) for 40 minutes, 3 times per week for 3 months.
Combined Aerobic Resistance Exercise (CARE)
MICT for 3 months, and then cycling on recumbent stationary cycle at moderate intensity for 30 minutes, followed by 20-minute strength-building exercise, 3 times per week for 3 months.
Combined Aerobic Resistance Exercise (CARE)
6 full-body strength-building exercises followed by 30 minutes of MICT cycling (described above). Total duration is 60 minutes, 3 times per week for 3 months.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Moderate Intensity Continuous Training (MICT)
Aerobic cycling at a moderate intensity (50-75% of heart rate reserve) for 30-50 minutes, 3 times per week for 3-6 months.
Chair-based Stretch
Stretching while seated for 30-50 minutes, 3 times per week for 6 months.
High-Intensity Interval Training (HIIT)
Aerobic cycling at a vigorous intensity (80-90% of heart rate reserve 4-minute bouts with 4-minute recovery intervals) for 40 minutes, 3 times per week for 3 months.
Combined Aerobic Resistance Exercise (CARE)
6 full-body strength-building exercises followed by 30 minutes of MICT cycling (described above). Total duration is 60 minutes, 3 times per week for 3 months.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Clinical diagnosis of MCI or probable and possible mild AD dementia according to 2011 Alzheimer's association-NIA criteria.
* Community-dwelling, e.g., homes and assisted living
* Age 65 years and older
* Medical clearance from PCP or cardiovascular provider
* Have a qualified study partner
* Agree to the blood draws
* Verified MRI safety
Study Partner:
* Age 18 or older
* Contact with participant ≥ 2 times per week for ≥ 6 months
* Know the participant's memory status and ability to perform activities of daily living
* Consent to participant
Exclusion Criteria
* Resting HR ≤ 50 or ≥ 100 beats/min after 5-minutes of quiet resting
* American College of Sports Medicine contraindications to exercise
* New, unevaluated symptoms or diseases a healthcare provider has not evaluated
* Abnormal cardiac condition uncovered during VO2peak testing
* Enrollment in another intervention that aims at improving cognition
* Moderate to strenuous exercise ≥150 minutes a week in the previous 6 months
* ≥ 2 anti-depression medications, or poorly managed or unstable depression
* Poorly managed or unstable anxiety
Study partners:
* none
65 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Banner Alzheimer's Institute
OTHER
Arizona State University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Fang Yu, PhD
Role: PRINCIPAL_INVESTIGATOR
Arizona State University
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Arizona State University
Phoenix, Arizona, United States
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Almirall D, Nahum-Shani I, Sherwood NE, Murphy SA. Introduction to SMART designs for the development of adaptive interventions: with application to weight loss research. Transl Behav Med. 2014 Sep;4(3):260-74. doi: 10.1007/s13142-014-0265-0.
Salisbury D, Mathiason MA, Yu F. Exercise Dose and Aerobic Fitness Response in Alzheimer's Dementia: Findings from the FIT-AD Trial. Int J Sports Med. 2022 Sep;43(10):850-858. doi: 10.1055/a-1639-2307. Epub 2021 Sep 7.
Pandey A, Swift DL, McGuire DK, Ayers CR, Neeland IJ, Blair SN, Johannsen N, Earnest CP, Berry JD, Church TS. Metabolic Effects of Exercise Training Among Fitness-Nonresponsive Patients With Type 2 Diabetes: The HART-D Study. Diabetes Care. 2015 Aug;38(8):1494-501. doi: 10.2337/dc14-2378. Epub 2015 Jun 17.
Huang G, Wang R, Chen P, Huang SC, Donnelly JE, Mehlferber JP. Dose-response relationship of cardiorespiratory fitness adaptation to controlled endurance training in sedentary older adults. Eur J Prev Cardiol. 2016 Mar;23(5):518-29. doi: 10.1177/2047487315582322. Epub 2015 Apr 21.
Salisbury D, Yu F. Establishing Reference Cardiorespiratory Fitness Parameters in Alzheimer's Disease. Sports Med Int Open. 2020 Jan 30;4(1):E1-E7. doi: 10.1055/a-1089-4957. eCollection 2020 Jan.
Gomes-Neto M, Duraes AR, Conceicao LSR, Roever L, Silva CM, Alves IGN, Ellingsen O, Carvalho VO. Effect of combined aerobic and resistance training on peak oxygen consumption, muscle strength and health-related quality of life in patients with heart failure with reduced left ventricular ejection fraction: a systematic review and meta-analysis. Int J Cardiol. 2019 Oct 15;293:165-175. doi: 10.1016/j.ijcard.2019.02.050. Epub 2019 Jun 24.
Lee J, Lee R, Stone AJ. Combined Aerobic and Resistance Training for Peak Oxygen Uptake, Muscle Strength, and Hypertrophy After Coronary Artery Disease: a Systematic Review and Meta-Analysis. J Cardiovasc Transl Res. 2020 Aug;13(4):601-611. doi: 10.1007/s12265-019-09922-0. Epub 2019 Oct 27.
Lee J, Stone AJ. Combined Aerobic and Resistance Training for Cardiorespiratory Fitness, Muscle Strength, and Walking Capacity after Stroke: A Systematic Review and Meta-Analysis. J Stroke Cerebrovasc Dis. 2020 Jan;29(1):104498. doi: 10.1016/j.jstrokecerebrovasdis.2019.104498. Epub 2019 Nov 13.
Hautala AJ, Makikallio TH, Kiviniemi A, Laukkanen RT, Nissila S, Huikuri HV, Tulppo MP. Cardiovascular autonomic function correlates with the response to aerobic training in healthy sedentary subjects. Am J Physiol Heart Circ Physiol. 2003 Oct;285(4):H1747-52. doi: 10.1152/ajpheart.00202.2003. Epub 2003 Jun 19.
Burns JM, Johnson DK, Watts A, Swerdlow RH, Brooks WM. Reduced lean mass in early Alzheimer disease and its association with brain atrophy. Arch Neurol. 2010 Apr;67(4):428-33. doi: 10.1001/archneurol.2010.38.
Sugimoto T, Ono R, Murata S, Saji N, Matsui Y, Niida S, Toba K, Sakurai T. Prevalence and associated factors of sarcopenia in elderly subjects with amnestic mild cognitive impairment or Alzheimer disease. Curr Alzheimer Res. 2016;13(6):718-26. doi: 10.2174/1567205013666160211124828.
Karlsen T, Aamot IL, Haykowsky M, Rognmo O. High Intensity Interval Training for Maximizing Health Outcomes. Prog Cardiovasc Dis. 2017 Jun-Jul;60(1):67-77. doi: 10.1016/j.pcad.2017.03.006. Epub 2017 Apr 3.
Levinger I, Shaw CS, Stepto NK, Cassar S, McAinch AJ, Cheetham C, Maiorana AJ. What Doesn't Kill You Makes You Fitter: A Systematic Review of High-Intensity Interval Exercise for Patients with Cardiovascular and Metabolic Diseases. Clin Med Insights Cardiol. 2015 Jun 25;9:53-63. doi: 10.4137/CMC.S26230. eCollection 2015.
Bossers WJ, van der Woude LH, Boersma F, Hortobagyi T, Scherder EJ, van Heuvelen MJ. A 9-Week Aerobic and Strength Training Program Improves Cognitive and Motor Function in Patients with Dementia: A Randomized, Controlled Trial. Am J Geriatr Psychiatry. 2015 Nov;23(11):1106-16. doi: 10.1016/j.jagp.2014.12.191. Epub 2015 Jan 3.
Yu F, Vock DM, Zhang L, Salisbury D, Nelson NW, Chow LS, Smith G, Barclay TR, Dysken M, Wyman JF. Cognitive Effects of Aerobic Exercise in Alzheimer's Disease: A Pilot Randomized Controlled Trial. J Alzheimers Dis. 2021;80(1):233-244. doi: 10.3233/JAD-201100.
Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc. 2001 Jun;33(6 Suppl):S446-51; discussion S452-3. doi: 10.1097/00005768-200106001-00013.
Yu F, Mathiason MA, Han S, Gunter JL, Jones D, Botha H, Jack C Jr. Mechanistic Effects of Aerobic Exercise in Alzheimer's Disease: Imaging Findings From the Pilot FIT-AD Trial. Front Aging Neurosci. 2021 Oct 7;13:703691. doi: 10.3389/fnagi.2021.703691. eCollection 2021.
Yu F, Han SY, Salisbury D, Pruzin JJ, Geda Y, Caselli RJ, Li D. Feasibility and preliminary effects of exercise interventions on plasma biomarkers of Alzheimer's disease in the FIT-AD trial: a randomized pilot study in older adults with Alzheimer's dementia. Pilot Feasibility Stud. 2022 Dec 2;8(1):243. doi: 10.1186/s40814-022-01200-2.
Association As. 2021 Alzheimer's disease facts and figures. Accessed April 21, 2021, 2021. https://www.alz.org/media/Documents/alzheimers-facts-and-figures-infographic.pdf
McCleery J, Quinn TJ. Aducanumab and the certainty of evidence. Age Ageing. 2021 Nov 10;50(6):1899-1900. doi: 10.1093/ageing/afab167. No abstract available.
Forbes D, Forbes SC, Blake CM, Thiessen EJ, Forbes S. Exercise programs for people with dementia. Cochrane Database Syst Rev. 2015 Apr 15;2015(4):CD006489. doi: 10.1002/14651858.CD006489.pub4.
Toots A, Littbrand H, Bostrom G, Hornsten C, Holmberg H, Lundin-Olsson L, Lindelof N, Nordstrom P, Gustafson Y, Rosendahl E. Effects of Exercise on Cognitive Function in Older People with Dementia: A Randomized Controlled Trial. J Alzheimers Dis. 2017;60(1):323-332. doi: 10.3233/JAD-170014.
Morris JK, Vidoni ED, Johnson DK, Van Sciver A, Mahnken JD, Honea RA, Wilkins HM, Brooks WM, Billinger SA, Swerdlow RH, Burns JM. Aerobic exercise for Alzheimer's disease: A randomized controlled pilot trial. PLoS One. 2017 Feb 10;12(2):e0170547. doi: 10.1371/journal.pone.0170547. eCollection 2017.
Hoffmann K, Sobol NA, Frederiksen KS, Beyer N, Vogel A, Vestergaard K, Braendgaard H, Gottrup H, Lolk A, Wermuth L, Jacobsen S, Laugesen LP, Gergelyffy RG, Hogh P, Bjerregaard E, Andersen BB, Siersma V, Johannsen P, Cotman CW, Waldemar G, Hasselbalch SG. Moderate-to-High Intensity Physical Exercise in Patients with Alzheimer's Disease: A Randomized Controlled Trial. J Alzheimers Dis. 2016;50(2):443-53. doi: 10.3233/JAD-150817.
van Uffelen JG, Chin A Paw MJ, Hopman-Rock M, van Mechelen W. The effects of exercise on cognition in older adults with and without cognitive decline: a systematic review. Clin J Sport Med. 2008 Nov;18(6):486-500. doi: 10.1097/JSM.0b013e3181845f0b.
Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci. 2003 Mar;14(2):125-30. doi: 10.1111/1467-9280.t01-1-01430.
Smith PJ, Blumenthal JA, Hoffman BM, Cooper H, Strauman TA, Welsh-Bohmer K, Browndyke JN, Sherwood A. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med. 2010 Apr;72(3):239-52. doi: 10.1097/PSY.0b013e3181d14633. Epub 2010 Mar 11.
Cancela JM, Ayan C, Varela S, Seijo M. Effects of a long-term aerobic exercise intervention on institutionalized patients with dementia. J Sci Med Sport. 2016 Apr;19(4):293-8. doi: 10.1016/j.jsams.2015.05.007. Epub 2015 Jun 4.
Yang SY, Shan CL, Qing H, Wang W, Zhu Y, Yin MM, Machado S, Yuan TF, Wu T. The Effects of Aerobic Exercise on Cognitive Function of Alzheimer's Disease Patients. CNS Neurol Disord Drug Targets. 2015;14(10):1292-7. doi: 10.2174/1871527315666151111123319.
Arcoverde C, Deslandes A, Moraes H, Almeida C, Araujo NB, Vasques PE, Silveira H, Laks J. Treadmill training as an augmentation treatment for Alzheimer's disease: a pilot randomized controlled study. Arq Neuropsiquiatr. 2014 Mar;72(3):190-6. doi: 10.1590/0004-282X20130231.
Ohman H, Savikko N, Strandberg TE, Kautiainen H, Raivio MM, Laakkonen ML, Tilvis R, Pitkala KH. Effects of Exercise on Cognition: The Finnish Alzheimer Disease Exercise Trial: A Randomized, Controlled Trial. J Am Geriatr Soc. 2016 Apr;64(4):731-8. doi: 10.1111/jgs.14059. Epub 2016 Apr 1.
Lautenschlager NT, Cox KL, Flicker L, Foster JK, van Bockxmeer FM, Xiao J, Greenop KR, Almeida OP. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA. 2008 Sep 3;300(9):1027-37. doi: 10.1001/jama.300.9.1027.
Baker LD, Frank LL, Foster-Schubert K, Green PS, Wilkinson CW, McTiernan A, Plymate SR, Fishel MA, Watson GS, Cholerton BA, Duncan GE, Mehta PD, Craft S. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010 Jan;67(1):71-9. doi: 10.1001/archneurol.2009.307.
Hernandez SS, Coelho FG, Gobbi S, Stella F. [Effects of physical activity on cognitive functions, balance and risk of falls in elderly patients with Alzheimer's dementia]. Rev Bras Fisioter. 2010 Jan-Feb;14(1):68-74. Portuguese.
Zieschang T, Schwenk M, Becker C, Uhlmann L, Oster P, Hauer K. Falls and Physical Activity in Persons With Mild to Moderate Dementia Participating in an Intensive Motor Training: Randomized Controlled Trial. Alzheimer Dis Assoc Disord. 2017 Oct-Dec;31(4):307-314. doi: 10.1097/WAD.0000000000000201.
Padala KP, Padala PR, Lensing SY, Dennis RA, Bopp MM, Roberson PK, Sullivan DH. Home-Based Exercise Program Improves Balance and Fear of Falling in Community-Dwelling Older Adults with Mild Alzheimer's Disease: A Pilot Study. J Alzheimers Dis. 2017;59(2):565-574. doi: 10.3233/JAD-170120.
Toots A, Littbrand H, Lindelof N, Wiklund R, Holmberg H, Nordstrom P, Lundin-Olsson L, Gustafson Y, Rosendahl E. Effects of a High-Intensity Functional Exercise Program on Dependence in Activities of Daily Living and Balance in Older Adults with Dementia. J Am Geriatr Soc. 2016 Jan;64(1):55-64. doi: 10.1111/jgs.13880.
Bossers WJ, van der Woude LH, Boersma F, Hortobagyi T, Scherder EJ, van Heuvelen MJ. Comparison of Effect of Two Exercise Programs on Activities of Daily Living in Individuals with Dementia: A 9-Week Randomized, Controlled Trial. J Am Geriatr Soc. 2016 Jun;64(6):1258-66. doi: 10.1111/jgs.14160.
Telenius EW, Engedal K, Bergland A. Effect of a high-intensity exercise program on physical function and mental health in nursing home residents with dementia: an assessor blinded randomized controlled trial. PLoS One. 2015 May 14;10(5):e0126102. doi: 10.1371/journal.pone.0126102. eCollection 2015.
Suttanon P, Hill KD, Said CM, Williams SB, Byrne KN, LoGiudice D, Lautenschlager NT, Dodd KJ. Feasibility, safety and preliminary evidence of the effectiveness of a home-based exercise programme for older people with Alzheimer's disease: a pilot randomized controlled trial. Clin Rehabil. 2013 May;27(5):427-38. doi: 10.1177/0269215512460877. Epub 2012 Nov 1.
Sobol NA, Hoffmann K, Frederiksen KS, Vogel A, Vestergaard K, Braendgaard H, Gottrup H, Lolk A, Wermuth L, Jakobsen S, Laugesen L, Gergelyffy R, Hogh P, Bjerregaard E, Siersma V, Andersen BB, Johannsen P, Waldemar G, Hasselbalch SG, Beyer N. Effect of aerobic exercise on physical performance in patients with Alzheimer's disease. Alzheimers Dement. 2016 Dec;12(12):1207-1215. doi: 10.1016/j.jalz.2016.05.004. Epub 2016 Jun 23.
Lam FM, Huang MZ, Liao LR, Chung RC, Kwok TC, Pang MY. Physical exercise improves strength, balance, mobility, and endurance in people with cognitive impairment and dementia: a systematic review. J Physiother. 2018 Jan;64(1):4-15. doi: 10.1016/j.jphys.2017.12.001. Epub 2017 Dec 27.
Rodrigues SLDS, Silva JMD, Oliveira MCC, Santana CMF, Carvalho KM, Barbosa BJAP. Physical exercise as a non-pharmacological strategy for reducing behavioral and psychological symptoms in elderly with mild cognitive impairment and dementia: a systematic review of randomized clinical trials. Arq Neuropsiquiatr. 2021 Dec;79(12):1129-1137. doi: 10.1590/0004-282X-ANP-2020-0539.
Fleiner T, Leucht S, Forstl H, Zijlstra W, Haussermann P. Effects of Short-Term Exercise Interventions on Behavioral and Psychological Symptoms in Patients with Dementia: A Systematic Review. J Alzheimers Dis. 2017;55(4):1583-1594. doi: 10.3233/JAD-160683.
Heesterbeek M, Van der Zee EA, van Heuvelen MJG. Passive exercise to improve quality of life, activities of daily living, care burden and cognitive functioning in institutionalized older adults with dementia - a randomized controlled trial study protocol. BMC Geriatr. 2018 Aug 14;18(1):182. doi: 10.1186/s12877-018-0874-4.
Song D, Yu DSF. Effects of a moderate-intensity aerobic exercise programme on the cognitive function and quality of life of community-dwelling elderly people with mild cognitive impairment: A randomised controlled trial. Int J Nurs Stud. 2019 May;93:97-105. doi: 10.1016/j.ijnurstu.2019.02.019. Epub 2019 Mar 5.
Holthoff VA, Marschner K, Scharf M, Steding J, Meyer S, Koch R, Donix M. Effects of physical activity training in patients with Alzheimer's dementia: results of a pilot RCT study. PLoS One. 2015 Apr 17;10(4):e0121478. doi: 10.1371/journal.pone.0121478. eCollection 2015.
Yu F, Nelson NW, Savik K, Wyman JF, Dysken M, Bronas UG. Affecting cognition and quality of life via aerobic exercise in Alzheimer's disease. West J Nurs Res. 2013 Jan;35(1):24-38. doi: 10.1177/0193945911420174. Epub 2011 Sep 12.
Lortie G, Simoneau JA, Hamel P, Boulay MR, Landry F, Bouchard C. Responses of maximal aerobic power and capacity to aerobic training. Int J Sports Med. 1984 Oct;5(5):232-6. doi: 10.1055/s-2008-1025911.
Hecksteden A, Pitsch W, Rosenberger F, Meyer T. Repeated testing for the assessment of individual response to exercise training. J Appl Physiol (1985). 2018 Jun 1;124(6):1567-1579. doi: 10.1152/japplphysiol.00896.2017. Epub 2018 Jan 11.
Karavirta L, Hakkinen K, Kauhanen A, Arija-Blazquez A, Sillanpaa E, Rinkinen N, Hakkinen A. Individual responses to combined endurance and strength training in older adults. Med Sci Sports Exerc. 2011 Mar;43(3):484-90. doi: 10.1249/MSS.0b013e3181f1bf0d.
Robinson MM, Dasari S, Konopka AR, Johnson ML, Manjunatha S, Esponda RR, Carter RE, Lanza IR, Nair KS. Enhanced Protein Translation Underlies Improved Metabolic and Physical Adaptations to Different Exercise Training Modes in Young and Old Humans. Cell Metab. 2017 Mar 7;25(3):581-592. doi: 10.1016/j.cmet.2017.02.009.
Yu F, Todd M, Salisbury D, Maxfield M, Pruzin J, Joseph RP, Su Y, Li D, Baena E, Coon D. Precision exercise in older adults with early Alzheimer's disease: The study protocol of the FIT-AD Sequential, Multiple Assignment, Randomized Trial (SMART). Trials. 2025 Oct 15;26(1):416. doi: 10.1186/s13063-025-09040-0.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
STUDY00017678
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.