Effect of the Nutritional Support System on Neuromotor Alterations in Patients With Cerebral Palsy
NCT ID: NCT05648422
Last Updated: 2023-02-01
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
144 participants
INTERVENTIONAL
2023-01-16
2025-01-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Effect of a Nutritional Support System for Improving Gross Motor Function in Cerebral Palsy
NCT03933709
Nutritional Status and Family Strategies in Children With Cerebral Palsy.
NCT04179422
10-week Leucine Supplementation in Cerebral Palsy
NCT03668548
Effects OF NMES With and Without Dynamic Bracing on Spasticity and Movement Quality in CP
NCT06303336
Diet and Activity in Cerebral Palsy
NCT02175108
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
A randomized, blinded, clinical trial will be conducted in children aged 4 to 11 years with CP functional level III of the Gross Motor Function Classification System (GMFCS), without impaired cognitive status and unable to walk on their own. They are randomly assigned to three groups: 1) follow-up group (GS) to which conventional diet (WHO) be applied; 2) control group 2 (GC) to which conventional diet (WHO), deworming and probiotics will be applied 3) intervention group (GI) deworming, probiotics, NSS supplements and specific diet will be applied, they will be followed up for three months; They will be evaluated at baseline, week 7 and week 13 with Gross Motor Function Measure 66 (GMFM-66) and MACS; at baseline and week 13 with kinetics and kinematic analysis, and electromyography (EMG). Statistical analysis: For the intragroup inferential statistical analysis, 2-way ANOVA will be used if the distribution is normal, otherwise FRIEDMAN will be used, in both cases post hoc tests will be applied; for the intergroup analysis, 1-way ANOVA will be used if the distribution is normal, otherwise KRUSKAL WALLIS will be used, in both cases post hoc tests will be applied.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
SEQUENTIAL
TREATMENT
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
FG (FOLLOW GROUP)
FG receive: Conventional diet (WHO).
No interventions assigned to this group
CG (CONTROL GROUP)
CG receive: Conventional diet (WHO), deworming (nitazoxanide at a dosage of 7.5 mg / kg every 12 hours for 3 days), and probiotics (Saccharomyces Boulardii, 200 mg every 12 hours for 6 days at week 1, 5 and 9).
Probiotics
Saccharomyces Boulardii 200 mg every 12 hours for 6 days at week 1, 5 and 9
Deworming
nitazoxanide at a dosage of 7.5 mg / kg every 12 hours for 3 days
Conventional diet (WHO)
This diet focuses on meeting caloric needs according to age, weight, height, and stress factor dividing total caloric value in 50% carbohydrates, 30% lipids, and 20% proteins. It consists of general nutricional recommendations.
IG (INTERVENTION GROUP)
IG receive: Deworming (nitazoxanide at a dosage of 7.5 mg / kg every 12 hours for 3 days), probiotics (Saccharomyces Boulardii, 200 mg every 12 hours for 6 days at week 1, 5 and 9), specific diet, and NSS envelope (glutamine, arginine, folic acid, PUFA-n3, vegetal protein, nicotinic acid, cobalamin, thiamine, pyridoxine, magnesium, zinc, selenium, cholecalciferol, resveratrol, ascorbic acid, Spirulina Máxima, and inuline) every 12 hours for 12 weeks.
Probiotics
Saccharomyces Boulardii 200 mg every 12 hours for 6 days at week 1, 5 and 9
NSS Nutritional Support System
Nutritional Support System consists in NSS envelope (glutamine, arginine, folic acid, PUFA-n3, vegetal protein, nicotinic acid, cobalamin, thiamine, pyridoxine, magnesium, zinc, selenium, cholecalciferol, resveratrol, ascorbic acid, Spirulina Máxima, glycine, tryptophan, and inuline) every 12 hours for 12 weeks.
Deworming
nitazoxanide at a dosage of 7.5 mg / kg every 12 hours for 3 days
Specific diet
This diet focuses on meeting caloric needs according to age, weight, height, and stress factor dividing total caloric value in 50% carbohydrates, 30% lipids, and 20% proteins. It consists of smoothies at breakfast and dinner, high consumption of fish, five meals during the day, 70% of meals eaten during the day will consist on vegetables, fruits, roots, cereals, and legumes. Red meat, gluten, lactose, junk food, sugar, salt, fast food free.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Probiotics
Saccharomyces Boulardii 200 mg every 12 hours for 6 days at week 1, 5 and 9
NSS Nutritional Support System
Nutritional Support System consists in NSS envelope (glutamine, arginine, folic acid, PUFA-n3, vegetal protein, nicotinic acid, cobalamin, thiamine, pyridoxine, magnesium, zinc, selenium, cholecalciferol, resveratrol, ascorbic acid, Spirulina Máxima, glycine, tryptophan, and inuline) every 12 hours for 12 weeks.
Deworming
nitazoxanide at a dosage of 7.5 mg / kg every 12 hours for 3 days
Specific diet
This diet focuses on meeting caloric needs according to age, weight, height, and stress factor dividing total caloric value in 50% carbohydrates, 30% lipids, and 20% proteins. It consists of smoothies at breakfast and dinner, high consumption of fish, five meals during the day, 70% of meals eaten during the day will consist on vegetables, fruits, roots, cereals, and legumes. Red meat, gluten, lactose, junk food, sugar, salt, fast food free.
Conventional diet (WHO)
This diet focuses on meeting caloric needs according to age, weight, height, and stress factor dividing total caloric value in 50% carbohydrates, 30% lipids, and 20% proteins. It consists of general nutricional recommendations.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Patients with spastic CP.
* Both sexes age 4 to 11 years.
* Primary caregiver engaged (full presence).
* Able to follow instructions.
* Tolerant to oral feeding.
* Parents or guardians to sign informed consent letter.
* Children, if able to write, sign the letter of assent.
Exclusion Criteria
* Having received botulinum toxin therapy in the last six months. Consumption of muscle relaxants in the last three months.
* Patient with any type of surgery in a period of less than 6 months.
* Presence of any other catabolic disease, which further increases their risk of malnutrition (renal, cardiovascular, pulmonary, hepatic, immunological).
* Intolerance to oral feeding.
* Lack of stimulation at home.
* Moderate to severe gastroesophageal reflux.
* Able to walk without support.
4 Years
11 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Anahuac University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Fernando Leal-Martinez
Principal investigator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Fernando Leal, PhD
Role: STUDY_DIRECTOR
Anahuac University
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Apac I.A.P. (Association For People With Cerebral Palsy)
México, , Mexico
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Trotta T, Porro C, Cianciulli A, Panaro MA. Beneficial Effects of Spirulina Consumption on Brain Health. Nutrients. 2022 Feb 5;14(3):676. doi: 10.3390/nu14030676.
Schweizer U, Fabiano M. Selenoproteins in brain development and function. Free Radic Biol Med. 2022 Sep;190:105-115. doi: 10.1016/j.freeradbiomed.2022.07.022. Epub 2022 Aug 10.
Roy Sarkar S, Mitra Mazumder P, Chatterjee K, Sarkar A, Adhikary M, Mukhopadhyay K, Banerjee S. Saccharomyces boulardii ameliorates gut dysbiosis associated cognitive decline. Physiol Behav. 2021 Jul 1;236:113411. doi: 10.1016/j.physbeh.2021.113411. Epub 2021 Mar 31.
Visco DB, Toscano AE, Juarez PAR, Gouveia HJCB, Guzman-Quevedo O, Torner L, Manhaes-de-Castro R. A systematic review of neurogenesis in animal models of early brain damage: Implications for cerebral palsy. Exp Neurol. 2021 Jun;340:113643. doi: 10.1016/j.expneurol.2021.113643. Epub 2021 Feb 23.
Rubin DI. Needle Electromyography Waveforms During Needle Electromyography. Neurol Clin. 2021 Nov;39(4):919-938. doi: 10.1016/j.ncl.2021.06.003. Epub 2021 Aug 31.
Le Roy C, Barja S, Sepulveda C, Guzman ML, Olivarez M, Figueroa MJ, Alvarez M. Vitamin D and iron deficiencies in children and adolescents with cerebral palsy. Neurologia (Engl Ed). 2021 Mar;36(2):112-118. doi: 10.1016/j.nrl.2017.11.005. Epub 2018 Jan 17. English, Spanish.
Tinkov AA, Skalnaya MG, Skalny AV. Serum trace element and amino acid profile in children with cerebral palsy. J Trace Elem Med Biol. 2021 Mar;64:126685. doi: 10.1016/j.jtemb.2020.126685. Epub 2020 Nov 12.
Huff TC, Sant DW, Camarena V, Van Booven D, Andrade NS, Mustafi S, Monje PV, Wang G. Vitamin C regulates Schwann cell myelination by promoting DNA demethylation of pro-myelinating genes. J Neurochem. 2021 Jun;157(6):1759-1773. doi: 10.1111/jnc.15015. Epub 2020 Apr 14.
Sorrenti V, Castagna DA, Fortinguerra S, Buriani A, Scapagnini G, Willcox DC. Spirulina Microalgae and Brain Health: A Scoping Review of Experimental and Clinical Evidence. Mar Drugs. 2021 May 22;19(6):293. doi: 10.3390/md19060293.
Eyles DW. Vitamin D: Brain and Behavior. JBMR Plus. 2020 Oct 18;5(1):e10419. doi: 10.1002/jbm4.10419. eCollection 2021 Jan.
Kazmierczak-Siedlecka K, Ruszkowski J, Fic M, Folwarski M, Makarewicz W. Saccharomyces boulardii CNCM I-745: A Non-bacterial Microorganism Used as Probiotic Agent in Supporting Treatment of Selected Diseases. Curr Microbiol. 2020 Sep;77(9):1987-1996. doi: 10.1007/s00284-020-02053-9. Epub 2020 May 29.
Sainz-Pelayo MP, Albu S, Murillo N, Benito-Penalva J. [Spasticity in neurological pathologies. An update on the pathophysiological mechanisms, advances in diagnosis and treatment]. Rev Neurol. 2020 Jun 16;70(12):453-460. doi: 10.33588/rn.7012.2019474. Spanish.
Sadowska M, Sarecka-Hujar B, Kopyta I. Cerebral Palsy: Current Opinions on Definition, Epidemiology, Risk Factors, Classification and Treatment Options. Neuropsychiatr Dis Treat. 2020 Jun 12;16:1505-1518. doi: 10.2147/NDT.S235165. eCollection 2020.
Vitrikas K, Dalton H, Breish D. Cerebral Palsy: An Overview. Am Fam Physician. 2020 Feb 15;101(4):213-220.
Leal-Martinez F, Franco D, Pena-Ruiz A, Castro-Silva F, Escudero-Espinosa AA, Rolon-Lacarrier OG, Lopez-Alarcon M, De Leon X, Linares-Eslava M, Ibarra A. Effect of a Nutritional Support System (Diet and Supplements) for Improving Gross Motor Function in Cerebral Palsy: An Exploratory Randomized Controlled Clinical Trial. Foods. 2020 Oct 13;9(10):1449. doi: 10.3390/foods9101449.
Choi S, Hong DK, Choi BY, Suh SW. Zinc in the Brain: Friend or Foe? Int J Mol Sci. 2020 Nov 25;21(23):8941. doi: 10.3390/ijms21238941.
Santos HO, Teixeira FJ, Schoenfeld BJ. Dietary vs. pharmacological doses of zinc: A clinical review. Clin Nutr. 2020 May;39(5):1345-1353. doi: 10.1016/j.clnu.2019.06.024. Epub 2019 Jul 4.
Hariharan S, Dharmaraj S. Selenium and selenoproteins: it's role in regulation of inflammation. Inflammopharmacology. 2020 Jun;28(3):667-695. doi: 10.1007/s10787-020-00690-x. Epub 2020 Mar 6.
Calderon-Ospina CA, Nava-Mesa MO. B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci Ther. 2020 Jan;26(1):5-13. doi: 10.1111/cns.13207. Epub 2019 Sep 6.
Michielsen M, Vaughan-Graham J, Holland A, Magri A, Suzuki M. The Bobath concept - a model to illustrate clinical practice. Disabil Rehabil. 2019 Aug;41(17):2080-2092. doi: 10.1080/09638288.2017.1417496. Epub 2017 Dec 17.
Vinals-Labanino CP, Velazquez-Bustamante AE, Vargas-Santiago SI, Arenas-Sordo ML. Usefulness of Cerebral Palsy Curves in Mexican Patients: A Cross-Sectional Study. J Child Neurol. 2019 May;34(6):332-338. doi: 10.1177/0883073819830560. Epub 2019 Mar 11.
Fragale N, Navarre N, Rogers J. General Nutrition for Children with Cerebral Palsy. In: Miller F, Bachrach S, Lennon N, O'Neil M, editors. Cerebral Palsy Cham: Springer International Publishing; 2019. p. 1-10.
Steele KM, Munger ME, Peters KM, Shuman BR, Schwartz MH. Repeatability of electromyography recordings and muscle synergies during gait among children with cerebral palsy. Gait Posture. 2019 Jan;67:290-295. doi: 10.1016/j.gaitpost.2018.10.009. Epub 2018 Oct 22.
Picon-Pages P, Garcia-Buendia J, Munoz FJ. Functions and dysfunctions of nitric oxide in brain. Biochim Biophys Acta Mol Basis Dis. 2019 Aug 1;1865(8):1949-1967. doi: 10.1016/j.bbadis.2018.11.007. Epub 2018 Nov 27.
Kaur H, Bose C, Mande SS. Tryptophan Metabolism by Gut Microbiome and Gut-Brain-Axis: An in silico Analysis. Front Neurosci. 2019 Dec 18;13:1365. doi: 10.3389/fnins.2019.01365. eCollection 2019.
Lu J, Claud EC. Connection between gut microbiome and brain development in preterm infants. Dev Psychobiol. 2019 Jul;61(5):739-751. doi: 10.1002/dev.21806. Epub 2018 Nov 20.
Panti-May JA, Zonta ML, Cociancic P, Barrientos-Medina RC, Machain-Williams C, Robles MR, Hernandez-Betancourt SF. Occurrence of intestinal parasites in Mayan children from Yucatan, Mexico. Acta Trop. 2019 Jul;195:58-61. doi: 10.1016/j.actatropica.2019.04.023. Epub 2019 Apr 22.
Bivona G, Gambino CM, Iacolino G, Ciaccio M. Vitamin D and the nervous system. Neurol Res. 2019 Sep;41(9):827-835. doi: 10.1080/01616412.2019.1622872. Epub 2019 May 30.
Gasperi V, Sibilano M, Savini I, Catani MV. Niacin in the Central Nervous System: An Update of Biological Aspects and Clinical Applications. Int J Mol Sci. 2019 Feb 23;20(4):974. doi: 10.3390/ijms20040974.
Ballaz SJ, Rebec GV. Neurobiology of vitamin C: Expanding the focus from antioxidant to endogenous neuromodulator. Pharmacol Res. 2019 Aug;146:104321. doi: 10.1016/j.phrs.2019.104321. Epub 2019 Jun 20.
Heshmati J, Morvaridzadeh M, Maroufizadeh S, Akbari A, Yavari M, Amirinejad A, Maleki-Hajiagha A, Sepidarkish M. Omega-3 fatty acids supplementation and oxidative stress parameters: A systematic review and meta-analysis of clinical trials. Pharmacol Res. 2019 Nov;149:104462. doi: 10.1016/j.phrs.2019.104462. Epub 2019 Sep 26.
Tamtaji OR, Heidari-Soureshjani R, Mirhosseini N, Kouchaki E, Bahmani F, Aghadavod E, Tajabadi-Ebrahimi M, Asemi Z. Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer's disease: A randomized, double-blind, controlled trial. Clin Nutr. 2019 Dec;38(6):2569-2575. doi: 10.1016/j.clnu.2018.11.034. Epub 2018 Dec 10.
Sharma SK, Bansal MP, Sandhir R. Altered dietary selenium influences brain iron content and behavioural outcomes. Behav Brain Res. 2019 Oct 17;372:112011. doi: 10.1016/j.bbr.2019.112011. Epub 2019 Jun 15.
Gao Z, Chen L, Xiong Q, Xiao N, Jiang W, Liu Y, Wu X, Hou W. Degraded Synergistic Recruitment of sEMG Oscillations for Cerebral Palsy Infants Crawling. Front Neurol. 2018 Sep 18;9:760. doi: 10.3389/fneur.2018.00760. eCollection 2018.
Caramico-Favero DCO, Guedes ZCF, Morais MB. FOOD INTAKE, NUTRITIONAL STATUS AND GASTROINTESTINAL SYMPTOMS IN CHILDREN WITH CEREBRAL PALSY. Arq Gastroenterol. 2018 Oct-Dec;55(4):352-357. doi: 10.1590/S0004-2803.201800000-78.
Guo YE, Suo N, Cui X, Yuan Q, Xie X. Vitamin C promotes oligodendrocytes generation and remyelination. Glia. 2018 Jul;66(7):1302-1316. doi: 10.1002/glia.23306. Epub 2018 Feb 9.
Garcia-Sanchez SF, Gomez-Galindo MT, Guzman-Pantoja JE. [Botulinum toxin A and physical therapy in gait in cerebral palsy]. Rev Med Inst Mex Seguro Soc. 2017 Jan-Feb;55(1):18-24. Spanish.
Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, Prakash S. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell Mol Life Sci. 2017 Oct;74(20):3769-3787. doi: 10.1007/s00018-017-2550-9. Epub 2017 Jun 22.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
202082
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.