Non-Invasive Measurement of Cardiac Output and Stroke Volume in PAH/CTEPH

NCT ID: NCT05618093

Last Updated: 2023-05-11

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

ENROLLING_BY_INVITATION

Clinical Phase

NA

Total Enrollment

100 participants

Study Classification

INTERVENTIONAL

Study Start Date

2023-03-02

Study Completion Date

2025-12-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) are severe clinical conditions that, despite advances in therapeutics over the past 20 years, lead to serious morbidity and mortality. Guidelines on the diagnosis and treatment of pulmonary hypertension (PH) recommend the use of a multiparametric risk stratification tool to determine severity of disease, which should guide initial therapy and therapy modulation. This multiparametric risk stratification schema includes objective assessment of exercise capacity, right ventricular function and hemodynamic parameters in order to classify patients into severity categories. Cardiac index (CI) and right atrial pressure (RAP), measured via right heart catheterization (RHC), are the hemodynamic parameters used in risk assessment of PH. Arguably, stroke volume index (SVI) is the most important hemodynamic parameter for assessment of PH severity and there is currently no validated method for noninvasive measurement of cardiac output (CO), CI or SVI. Currently, a major obstacle in the field is that hemodynamic measurements are not obtained on a regular basis in the risk assessment and therapy modulation of patients with PAH and CTEPH. If a noninvasive method of hemodynamic measurement could be correlated with other objective measurements of risk assessment, it could become an invaluable tool in therapy initiation and modulation in the ambulatory setting.

This is a single center study to evaluate the use of non-invasive measurement of CO and stroke volume to assess risk and response to treatment in patients with PAH and non- operable CTEPH. We anticipate to enroll a total of 100 subjects at Ronald Reagan UCLA Medical Center.

A maximum of 10 hour in total for the study including the consent process, pre-procedure care, RHC procedure, and follow up visit. The initial visit will be approximately 4 hours with the RHC procedure itself will only be 20 minutes. Each follow up visit will be 1.5 hour.

Patients with known or suspected PAH or CTEPH will undergo a RHC as part of his or her standard of care. Three techniques of CO measurement will be performed sequentially at the time of the RHC.

The device that will be used is the Edwards ClearSight system and EV1000 clinical platform, a device that measures NIBP.

Patients will be followed over the period of 1 year every 3 months to obtain serial measurements for six-minute walk distance (6MWD), World Health Organization (WHO)/New York Heart Association Functional Class (FC), B-type natriuretic peptide (BNP) or N-terminal-pro hormone BNP (NT-proBNP), and non-invasive hemodynamic measurements. Additional visits will be scheduled to obtain the serial measurements one month prior and one month following if a patient is initiating or changing PH-specific therapy.

As this is a study looking at the feasibility of non-invasive measurement of cardiac output and stroke volume for risk assessment and response to therapy in pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH), study personnel performing the study procedures will not be blinded to the clinical diagnosis and the management of the subject.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

This is a single center study to evaluate the use of non-invasive measurement of cardiac output and stroke volume to assess risk and response to treatment in patients with pulmonary arterial hypertension (PAH) and non- operable chronic thromboembolic pulmonary hypertension (CTEPH). We anticipate to enroll a total of 100 subjects at Ronald Reagan UCLA Medical Center.

After informed consent is obtained, the following procedure will be performed:

Patients with known or suspected pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH) will undergo a right heart catheterization (RHC) as part of his or her standard of care. Three techniques of cardiac output (CO) measurement will be performed sequentially at the time of the RHC. The order of cardiac output testing will be randomized after informed consent is obtained and prior to the procedure. The operator performing the RHC procedure will be blinded to both the non-invasive blood pressure (NIBP) measurement and direct Fick cardiac output (CO) measurements while performing thermodilution cardiac output (CO) measurement.

The device that will be used is the Edwards ClearSight system and EV1000 clinical platform, a device that measures non-invasive blood pressure (NIBP).

Patients will be followed over the period of 1 year, up to every 3 months, to obtain serial measurements of six-minute walk distance (6MWD), World Health Organization (WHO)/New York Heart Association Functional Class (FC), and B-type natriuretic peptide (BNP) or N-terminal-pro hormone BNP (NT-proBNP) as part of standard of care. These serial measurements will be collected from the patient's medical record. Non-invasive hemodynamic measurements will be performed for research purposes. Additional visits will be scheduled to obtain the serial measurements one month prior and one month following if a patient is initiating or changing PH-specific therapy.

As this is a study looking at the feasibility of non-invasive measurement of cardiac output and stroke volume for risk assessment and response to therapy in pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH), study personnel performing the study procedures will not be blinded to the clinical diagnosis and the management of the subject.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Pulmonary Arterial Hypertension Chronic Thromboembolic Pulmonary Hypertension

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

This is a single center study to evaluate the use of non-invasive measurement of cardiac output and stroke volume to assess risk and response to treatment in patients with pulmonary arterial hypertension (PAH) and non- operable chronic thromboembolic pulmonary hypertension (CTEPH). We anticipate to enroll a total of 100 subjects at Ronald Reagan UCLA Medical Center.
Primary Study Purpose

DIAGNOSTIC

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Patients diagnosed with PAH or CTEPH

Patients with a confirmed diagnosis or suspected diagnosis of pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH) prior to initiation or change in therapy.

Group Type EXPERIMENTAL

Non-invasive hemodynamic measurements

Intervention Type DEVICE

A patient profile will be set up in the Edwards EV1000 clinical platform by inputting the patient's demographic information. One or two Edwards ClearSight finger cuffs will be placed on the index, middle, and/or ring finger on one hand of the patient. A pressure controller will be secured by a forearm strap where the finger cuffs will be connected to the pressure controller. The pressure controller will be connected to the Edwards EV1000 clinical platform monitor. A heart reference sensor (HRS) will be connected to the pressure controller, a finger cuff, and to the patient at heart level. The Edwards EV1000 clinical platform will calibrate the finger probes, then record measurements for 10-30 seconds. If two finger probes are available, measurements will alternate between fingers.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Non-invasive hemodynamic measurements

A patient profile will be set up in the Edwards EV1000 clinical platform by inputting the patient's demographic information. One or two Edwards ClearSight finger cuffs will be placed on the index, middle, and/or ring finger on one hand of the patient. A pressure controller will be secured by a forearm strap where the finger cuffs will be connected to the pressure controller. The pressure controller will be connected to the Edwards EV1000 clinical platform monitor. A heart reference sensor (HRS) will be connected to the pressure controller, a finger cuff, and to the patient at heart level. The Edwards EV1000 clinical platform will calibrate the finger probes, then record measurements for 10-30 seconds. If two finger probes are available, measurements will alternate between fingers.

Intervention Type DEVICE

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

Non-invasive blood pressure (NIBP)

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Patient ≥ 18 years of age.
* The patient must understand and sign informed consent form (ICF).
* Patients with a confirmed diagnosis or suspected diagnosis of pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH) prior to initiation or change in therapy.
* PAH or CTEPH patients undergoing right heart catheterization (RHC) as part of their standard of care.

Exclusion Criteria

* BMI \< 20 or BMI \> 35.
* Height less than 120 cm.
* Diagnosis of atrial fibrillation, aortic or mitral valve insufficiency or stenosis, or end-stage renal disease.
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

University of California, Los Angeles

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Sonia Jasuja, MD

Health Sciences Clinical Instructor

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Sonia Jasuja, M.D.

Role: PRINCIPAL_INVESTIGATOR

University of California, Los Angeles

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Ronald Reagan UCLA Medical Center

Los Angeles, California, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

References

Explore related publications, articles, or registry entries linked to this study.

Galie N, Channick RN, Frantz RP, Grunig E, Jing ZC, Moiseeva O, Preston IR, Pulido T, Safdar Z, Tamura Y, McLaughlin VV. Risk stratification and medical therapy of pulmonary arterial hypertension. Eur Respir J. 2019 Jan 24;53(1):1801889. doi: 10.1183/13993003.01889-2018. Print 2019 Jan.

Reference Type RESULT
PMID: 30545971 (View on PubMed)

Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A, Gomez Sanchez MA, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M; ESC Scientific Document Group. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016 Jan 1;37(1):67-119. doi: 10.1093/eurheartj/ehv317. Epub 2015 Aug 29. No abstract available.

Reference Type RESULT
PMID: 26320113 (View on PubMed)

Raina A, Humbert M. Risk assessment in pulmonary arterial hypertension. Eur Respir Rev. 2016 Dec;25(142):390-398. doi: 10.1183/16000617.0077-2016.

Reference Type RESULT
PMID: 27903661 (View on PubMed)

Maron BA. Hemodynamics should be the primary approach to diagnosing, following, and managing pulmonary arterial hypertension. Can J Cardiol. 2015 Apr;31(4):515-20. doi: 10.1016/j.cjca.2014.09.021. Epub 2014 Sep 28.

Reference Type RESULT
PMID: 25742869 (View on PubMed)

D'Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Kernis JT, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med. 1991 Sep 1;115(5):343-9. doi: 10.7326/0003-4819-115-5-343.

Reference Type RESULT
PMID: 1863023 (View on PubMed)

Sandoval J, Bauerle O, Palomar A, Gomez A, Martinez-Guerra ML, Beltran M, Guerrero ML. Survival in primary pulmonary hypertension. Validation of a prognostic equation. Circulation. 1994 Apr;89(4):1733-44. doi: 10.1161/01.cir.89.4.1733.

Reference Type RESULT
PMID: 8149539 (View on PubMed)

Weatherald J, Boucly A, Chemla D, Savale L, Peng M, Jevnikar M, Jais X, Taniguchi Y, O'Connell C, Parent F, Sattler C, Herve P, Simonneau G, Montani D, Humbert M, Adir Y, Sitbon O. Prognostic Value of Follow-Up Hemodynamic Variables After Initial Management in Pulmonary Arterial Hypertension. Circulation. 2018 Feb 13;137(7):693-704. doi: 10.1161/CIRCULATIONAHA.117.029254. Epub 2017 Oct 25.

Reference Type RESULT
PMID: 29070502 (View on PubMed)

Weatherald J, Boucly A, Launay D, Cottin V, Prevot G, Bourlier D, Dauphin C, Chaouat A, Savale L, Jais X, Jevnikar M, Traclet J, De Groote P, Simonneau G, Hachulla E, Mouthon L, Montani D, Humbert M, Sitbon O. Haemodynamics and serial risk assessment in systemic sclerosis associated pulmonary arterial hypertension. Eur Respir J. 2018 Oct 18;52(4):1800678. doi: 10.1183/13993003.00678-2018. Print 2018 Oct.

Reference Type RESULT
PMID: 30209196 (View on PubMed)

Yung GL, Fedullo PF, Kinninger K, Johnson W, Channick RN. Comparison of impedance cardiography to direct Fick and thermodilution cardiac output determination in pulmonary arterial hypertension. Congest Heart Fail. 2004 Mar-Apr;10(2 Suppl 2):7-10. doi: 10.1111/j.1527-5299.2004.03406.x.

Reference Type RESULT
PMID: 15073478 (View on PubMed)

Dupuis M, Noel-Savina E, Prevot G, Tetu L, Pillard F, Riviere D, Didier A. Determination of Cardiac Output in Pulmonary Hypertension Using Impedance Cardiography. Respiration. 2018;96(6):500-506. doi: 10.1159/000486423. Epub 2018 Feb 9.

Reference Type RESULT
PMID: 29428946 (View on PubMed)

Humbert M, Guignabert C, Bonnet S, Dorfmuller P, Klinger JR, Nicolls MR, Olschewski AJ, Pullamsetti SS, Schermuly RT, Stenmark KR, Rabinovitch M. Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. Eur Respir J. 2019 Jan 24;53(1):1801887. doi: 10.1183/13993003.01887-2018. Print 2019 Jan.

Reference Type RESULT
PMID: 30545970 (View on PubMed)

Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA, Krowka M, Williams PG, Souza R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J. 2019 Jan 24;53(1):1801913. doi: 10.1183/13993003.01913-2018. Print 2019 Jan.

Reference Type RESULT
PMID: 30545968 (View on PubMed)

Humbert M, Sitbon O, Yaici A, Montani D, O'Callaghan DS, Jais X, Parent F, Savale L, Natali D, Gunther S, Chaouat A, Chabot F, Cordier JF, Habib G, Gressin V, Jing ZC, Souza R, Simonneau G; French Pulmonary Arterial Hypertension Network. Survival in incident and prevalent cohorts of patients with pulmonary arterial hypertension. Eur Respir J. 2010 Sep;36(3):549-55. doi: 10.1183/09031936.00057010. Epub 2010 Jun 18.

Reference Type RESULT
PMID: 20562126 (View on PubMed)

Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, Yaici A, Weitzenblum E, Cordier JF, Chabot F, Dromer C, Pison C, Reynaud-Gaubert M, Haloun A, Laurent M, Hachulla E, Cottin V, Degano B, Jais X, Montani D, Souza R, Simonneau G. Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation. 2010 Jul 13;122(2):156-63. doi: 10.1161/CIRCULATIONAHA.109.911818. Epub 2010 Jun 28.

Reference Type RESULT
PMID: 20585011 (View on PubMed)

Boucly A, Weatherald J, Savale L, Jais X, Cottin V, Prevot G, Picard F, de Groote P, Jevnikar M, Bergot E, Chaouat A, Chabanne C, Bourdin A, Parent F, Montani D, Simonneau G, Humbert M, Sitbon O. Risk assessment, prognosis and guideline implementation in pulmonary arterial hypertension. Eur Respir J. 2017 Aug 3;50(2):1700889. doi: 10.1183/13993003.00889-2017. Print 2017 Aug.

Reference Type RESULT
PMID: 28775050 (View on PubMed)

Benza RL, Gomberg-Maitland M, Miller DP, Frost A, Frantz RP, Foreman AJ, Badesch DB, McGoon MD. The REVEAL Registry risk score calculator in patients newly diagnosed with pulmonary arterial hypertension. Chest. 2012 Feb;141(2):354-362. doi: 10.1378/chest.11-0676. Epub 2011 Jun 16.

Reference Type RESULT
PMID: 21680644 (View on PubMed)

Benza RL, Miller DP, Gomberg-Maitland M, Frantz RP, Foreman AJ, Coffey CS, Frost A, Barst RJ, Badesch DB, Elliott CG, Liou TG, McGoon MD. Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation. 2010 Jul 13;122(2):164-72. doi: 10.1161/CIRCULATIONAHA.109.898122. Epub 2010 Jun 28.

Reference Type RESULT
PMID: 20585012 (View on PubMed)

Benza RL, Miller DP, Barst RJ, Badesch DB, Frost AE, McGoon MD. An evaluation of long-term survival from time of diagnosis in pulmonary arterial hypertension from the REVEAL Registry. Chest. 2012 Aug;142(2):448-456. doi: 10.1378/chest.11-1460.

Reference Type RESULT
PMID: 22281797 (View on PubMed)

Benza RL, Miller DP, Foreman AJ, Frost AE, Badesch DB, Benton WW, McGoon MD. Prognostic implications of serial risk score assessments in patients with pulmonary arterial hypertension: a Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL) analysis. J Heart Lung Transplant. 2015 Mar;34(3):356-61. doi: 10.1016/j.healun.2014.09.016. Epub 2014 Sep 28.

Reference Type RESULT
PMID: 25447572 (View on PubMed)

Hoeper MM, Huscher D, Ghofrani HA, Delcroix M, Distler O, Schweiger C, Grunig E, Staehler G, Rosenkranz S, Halank M, Held M, Grohe C, Lange TJ, Behr J, Klose H, Wilkens H, Filusch A, Germann M, Ewert R, Seyfarth HJ, Olsson KM, Opitz CF, Gaine SP, Vizza CD, Vonk-Noordegraaf A, Kaemmerer H, Gibbs JS, Pittrow D. Elderly patients diagnosed with idiopathic pulmonary arterial hypertension: results from the COMPERA registry. Int J Cardiol. 2013 Sep 30;168(2):871-80. doi: 10.1016/j.ijcard.2012.10.026. Epub 2012 Nov 17.

Reference Type RESULT
PMID: 23164592 (View on PubMed)

Kylhammar D, Kjellstrom B, Hjalmarsson C, Jansson K, Nisell M, Soderberg S, Wikstrom G, Radegran G. A comprehensive risk stratification at early follow-up determines prognosis in pulmonary arterial hypertension. Eur Heart J. 2018 Dec 14;39(47):4175-4181. doi: 10.1093/eurheartj/ehx257.

Reference Type RESULT
PMID: 28575277 (View on PubMed)

Siedlecka J, Siedlecki P, Bortkiewicz A. Impedance cardiography - Old method, new opportunities. Part I. Clinical applications. Int J Occup Med Environ Health. 2015;28(1):27-33. doi: 10.13075/ijomeh.1896.00451.

Reference Type RESULT
PMID: 26159944 (View on PubMed)

De Maria AN, Raisinghani A. Comparative overview of cardiac output measurement methods: has impedance cardiography come of age? Congest Heart Fail. 2000 Mar-Apr;6(2):60-73. doi: 10.1111/j.1527-5299.2000.80139.x.

Reference Type RESULT
PMID: 12029189 (View on PubMed)

van Wolferen SA, Marcus JT, Boonstra A, Marques KM, Bronzwaer JG, Spreeuwenberg MD, Postmus PE, Vonk-Noordegraaf A. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J. 2007 May;28(10):1250-7. doi: 10.1093/eurheartj/ehl477. Epub 2007 Jan 22.

Reference Type RESULT
PMID: 17242010 (View on PubMed)

Galie N, Palazzini M, Manes A. Pulmonary arterial hypertension: from the kingdom of the near-dead to multiple clinical trial meta-analyses. Eur Heart J. 2010 Sep;31(17):2080-6. doi: 10.1093/eurheartj/ehq152. Epub 2010 May 26. No abstract available.

Reference Type RESULT
PMID: 20504865 (View on PubMed)

Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, Yaici A, Weitzenblum E, Cordier JF, Chabot F, Dromer C, Pison C, Reynaud-Gaubert M, Haloun A, Laurent M, Hachulla E, Simonneau G. Pulmonary arterial hypertension in France: results from a national registry. Am J Respir Crit Care Med. 2006 May 1;173(9):1023-30. doi: 10.1164/rccm.200510-1668OC. Epub 2006 Feb 2.

Reference Type RESULT
PMID: 16456139 (View on PubMed)

Peacock AJ, Murphy NF, McMurray JJ, Caballero L, Stewart S. An epidemiological study of pulmonary arterial hypertension. Eur Respir J. 2007 Jul;30(1):104-9. doi: 10.1183/09031936.00092306. Epub 2007 Mar 14.

Reference Type RESULT
PMID: 17360728 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

20-001981

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.