The Safety and Feasibility of tDCS Combined With Conservative Treatment for Cervicogenic Headaches

NCT ID: NCT05582616

Last Updated: 2024-06-27

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

32 participants

Study Classification

INTERVENTIONAL

Study Start Date

2022-11-03

Study Completion Date

2024-04-24

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Annually, up to 150,000 individuals are affected by cervicogenic headaches (CGH) in Canada with many of these cases being chronic. Current treatments for CGH are limited in efficacy and durability - indicating a dire need for novel interventions in this population. Transcranial direct current stimulation (tDCS) and physiotherapy have a high degree of safety and have been studied as interventions for many other chronic pain conditions and headache disorders. We propose to study the feasibility and safety of tDCS alongside physiotherapy for CGH further in a randomized sham controlled trial.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Annually, up to 150,000 people in Canada and experience cervicogenic headaches (CGH) with many of these patients suffering from chronic CGH. CGH is a pain disorder where pain is perceived in the head but caused by dysfunction of the cervical spine and its anatomical structure. More specifically, the pathogenesis of CGH is due to the convergence of nociceptive afferents from the upper three cervical nerves and trigeminal nerves onto second-order neurons in the trigeminocervical nucleus. The pain signaling resulting from this is also modulated through sensorineural pathways involving the thalamus and the sensorimotor cortex. As such symptoms of CGH include restricted movement, local tenderness of the upper cervical spine joints, musculoskeletal impairments, headache, local pressure hyperalgesia and bilateral thermal hypoesthesia. To date, there is no "cure" for chronic CGH and current treatment entails trial and error with behavior management, environmental modifications and medications. Consequently, there is a significant need for new approaches to symptom management in order to help improve functional impairment and disease burden associated with treating CGH. Transcranial direct current stimulation (tDCS) and physiotherapy have a high degree of safety and have been studied as an intervention for many other chronic pain conditions and headache disorders, including arthritis and migraines, demonstrating considerable potential. The investigators propose to study the safety and feasibility of tDCS alongside physiotherapy as a treatment for CGH in a randomized sham controlled trial.

RESEARCH QUESTIONS AND OBJECTIVES

The overall objective is to study the feasibility and safety of tDCS applied to the primary motor cortex in patients with CGH and to explore whether active tDCS augments the effect of rehabilitation therapy.

Specifically the objectives are:

Primary Objective: To determine whether active tDCS is feasible and safe compared to sham when administered with rehabilitation therapy for patients with CGH when administered 3 times per week over the course of 6 weeks. Safety will be measured through serious adverse events (defined as events requiring medical attention). Feasibility will be measured by recruitment (greater than 30%), retention (greater than 80%), and adherence (greater than 70%). These outcomes will be measured throughout the treatment process up to immediately post-treatment.

Secondary Objective: To determine what secondary outcomes such as quality of life, headaches, pain sensitivity, neck mobility, anxiety, and depression improve with active tDCS treatment in individuals suffering with CGH. Quality of life will be measured via the European Quality of Life Five Dimension (EQ-5D), headache intensity, frequency, duration, and impacts on life will be measured via headache diaries and the Headache Intensity Test - 6 (HIT-6), headache effects on participant function will be measured via the Headache Disability Index (HDI), neck pain intensity will be measured through the numeric pain rating scale (NPRS), pain sensitivity will be measured via the Pain Sensitivity Questionnaire (PSQ), pain impacts on quality of life will be measured through the patient reported outcomes measurement information system - pain interference scale (PROMIS-PI), neck mobility will be measured through various motor control, strength, and endurance tests, feelings of depression will be measured via the PHQ-9 and anxiety via the GADS-7 before treatment after treatment and at 6- and 12- weeks post treatment.

Third objective: To explore whether the effects of active tDCS will augment the effects of rehabilitation therapy in treating individuals with CGH.

METHODS

This study will be a double-blind, sham-controlled, concealed allocation, randomized, clinical trial.

Clinical Assessments: Demographic information will be collected two weeks prior to starting the study including age, sex, education, headache history, concussion history, past medical history, medication use, and family medical history. Baseline questionnaires will be completed including 2-weeks of Headache Diaries Headache Impact Test - 6 (HIT-6), Rivermead PPCS questionnaire (RPQ), Headache Disability Index (HDI), European Quality of Life Five Dimension (EQ-5D), patient health questionnaire-9 (PHQ-9), generalized anxiety disorder scale-7 (GADS-7), Patient Reported Outcomes Measurement Information System Pain Interference Sub-scale (PROMIS-PI), the Pain Catastrophizing Scale (PCS), and the Numeric Pain Rating Scale (NPRS). Furthermore the following baseline neck mobility assessments will be used: the Craniocervical Flexion Test (CCFT), the Cervical Extensor Endurance Test (CEET), the Dynamometry Neck-Strength Assessment (DNSA), a range of cervical motion assessment (ROM), and a manual examination of the cervical joints (MECJ). Patients will keep a two-week baseline headache diary before treatment, 2 weeks during treatment, 2 weeks following tDCS, and for 2 weeks before the 6 and 12 week follow up assessments (total of 8 weeks). Patients will be reassessed at the completion of their tDCS treatment, and at 6- and 12-weeks post-treatment. The assessments administered at each follow up are: 2-week Headache Diaries, RPQ, HIT-6, HDI, EQ-5D, PHQ-9, GAD-7, NPRS, PCS, PROMIS-PI, CCFT, CEET, DNSA, ROM, and MECJ.

tDCS Protocol: Patients will engage in a six-week treatment protocol with 3 sessions per week (18 treatments). This was chosen to give participants at least a day between each session in order to minimize discomfort and because the number of sessions is consistent with previous migraine literature. The primary motor cortex (M1) will be the treatment target given previous literature highlighting reduced pain sensitivity and improved motor learning outcomes following tDCS stimulation of this region. M1 will be found through measurements of the head; more specifically the point halfway between the nasion and inion as well as halfway between the left and right tragus will be found, from here we will move down 20% of the distance between the left and right tragus while staying on the line between tragi. The anode will be placed over the M1 while the cathode will be placed over the super orbital region; each electrode will be held in place with a strap and will make as much contact with the skin as possible. tDCS will be delivered via two 35cm2 surface sponge electrodes at an intensity of 2mA in the active group and 0mA in the sham group. There will be a 30 second fade in and fade out period before and after stimulation with 20 minutes of active stimulation. In the sham condition, participants will only experience the 30 second fade in period and then the stimulator will be turned off. Previous sham studies have demonstrated the efficacy of this blinding method.

Physiotherapy Protocol: Participants will engage in a six-week physiotherapy program which will occur immediately following each tDCS session. The exercises to be used focus on head and back strength and motor control and were assembled by a licensed physiotherapist based on previous physiotherapy protocols for treating CGH. The exercises are performed at a level that is pain-free and are progressed when goals are reached (approximately every 2 weeks). Participants will also be expected to increase daily physical activity levels to 30 minutes per day for at least 5 days a week as a part of the physiotherapy program. This will be tracked using an exercise diary to be completed by participants each day.

Statistical Analysis: Summary statistics will be done and reported so that feasibility and safety can be assessed and future studies can use the results presented for power calculations.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Cervicogenic Headache

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Double blind randomized placebo controlled clinical trial.
Primary Study Purpose

TREATMENT

Blinding Strategy

QUADRUPLE

Participants Caregivers Investigators Outcome Assessors
Participants, researcher, and care providers will be blinded until after the analysis period, researchers will be assessing outcomes.

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Active tDCS with physiotherapy

Patients will engage in a six-week treatment protocol with 3 sessions per week (18 treatments). This was chosen to minimize discomfort and ensure the number of sessions is consistent with previous migraine literature. The primary motor cortex (M1) will be the treatment target to reduce pain sensitivity and improve motor learning. M1 will be found through measurements of the head: the point halfway between the nasion and inion and halfway between the left and right tragus will be found, we will then move down 20% of the inter-tragi distance and place the anode there. The cathode will then be placed over the super orbital region. Each electrode will be held in place with a strap and will make as much contact with the skin as possible. tDCS will be delivered via two 35cm2 surface sponge electrodes at an intensity of 2mA in the active group.

Group Type EXPERIMENTAL

Transcranial Direct Current Stimulation

Intervention Type DEVICE

See treatment arm description

Sham tDCS with physiotherapy

In the sham condition, the number of sessions, placement of electrodes, and types of electrodes used will be the same, however, only a 30 second ramp up period will be administered to emulate active tDCS therapy. Patients will be able to hear the sounds of the device and will feel slight tingling for the first 30 seconds but will receive no active stimulation. Previous sham studies have demonstrated efficacy of the blinding method.

Group Type SHAM_COMPARATOR

Sham Transcranial Direct Current Stimulation

Intervention Type DEVICE

See sham comparator arm description

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Transcranial Direct Current Stimulation

See treatment arm description

Intervention Type DEVICE

Sham Transcranial Direct Current Stimulation

See sham comparator arm description

Intervention Type DEVICE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Diagnosed with cervicogenic headaches based on International Headache Society Guidelines lasting greater than 12 weeks
* The International Headache Society Guidelines are as follows: A) Presence of a headache fulfilling criterion C; B) Clinical and/or imaging evidence of a disorder or lesion within the cervical spine or soft tissues of the neck, known to be able to cause headache; C) Evidence of causation demonstrated by at least two of the following: (a) Headache has developed in temporal relation to the onset of the cervical disorder or appearance of the lesion; (b) Headache has significantly improved or resolved in parallel with improvement in or resolution of the cervical disorder or lesion; (c) Cervical range of motion is reduced and headache is made significantly worse by provocative maneuvers; (d) Headache is abolished following diagnostic blockade of a cervical structure or its nerve supply.
* Average pain score ≥ 4/10 and Neck Disability score ≥ 28/50

Exclusion Criteria

* Known cervical spine pathology (such as tumours or fractures)
* Nerve root pain/sensory loss
* Muscular or joint inflammatory conditions
* Neurological or psychiatric conditions
* Undergone recent surgery (within prior year)
* Have contraindications to tDCS (metal or electronic implants in the brain/skull; metal or electronic implants in other sites on the body; surgical procedures involving the head or spinal cord; skin problems such as dermatitis, psoriasis or eczema; epilepsy or a previous convulsion/seizure; fainting spells or syncope; pregnancy or any chance of pregnancy; previous electrical or magnetic stimulation)
Minimum Eligible Age

18 Years

Maximum Eligible Age

65 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Alberta Health services

OTHER

Sponsor Role collaborator

University of Calgary

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Chantel T Debert, MD MSc FRCPC CSCN

Role: PRINCIPAL_INVESTIGATOR

University of Calgary

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

University of Calgary

Calgary, Alberta, Canada

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Canada

References

Explore related publications, articles, or registry entries linked to this study.

Langer L, Levy C, Bayley M. Increasing Incidence of Concussion: True Epidemic or Better Recognition? J Head Trauma Rehabil. 2020 Jan/Feb;35(1):E60-E66. doi: 10.1097/HTR.0000000000000503.

Reference Type BACKGROUND
PMID: 31246881 (View on PubMed)

Barnsley L, Lord S, Bogduk N. Whiplash injury. Pain. 1994 Sep;58(3):283-307. doi: 10.1016/0304-3959(94)90123-6. No abstract available.

Reference Type BACKGROUND
PMID: 7838578 (View on PubMed)

Sjaastad O, Fredriksen TA, Batnes J, Petersen HC, Bakketeig LS. Whiplash in individuals with known pre-accident, clinical neck status. J Headache Pain. 2006 Feb;7(1):9-20. doi: 10.1007/s10194-006-0270-x. Epub 2006 Feb 20.

Reference Type BACKGROUND
PMID: 16485074 (View on PubMed)

Lord SM, Barnsley L, Wallis BJ, Bogduk N. Third occipital nerve headache: a prevalence study. J Neurol Neurosurg Psychiatry. 1994 Oct;57(10):1187-90. doi: 10.1136/jnnp.57.10.1187.

Reference Type BACKGROUND
PMID: 7931379 (View on PubMed)

Lindblom U, Verrillo RT. Sensory functions in chronic neuralgia. J Neurol Neurosurg Psychiatry. 1979 May;42(5):422-35. doi: 10.1136/jnnp.42.5.422.

Reference Type BACKGROUND
PMID: 448382 (View on PubMed)

Becser N, Sand T, Pareja JA, Zwart JA. Thermal sensitivity in unilateral headaches. Cephalalgia. 1998 Dec;18(10):675-83; discussion 657. doi: 10.1046/j.1468-2982.1998.1810675.x.

Reference Type BACKGROUND
PMID: 9950624 (View on PubMed)

Bogduk N, Govind J. Cervicogenic headache: an assessment of the evidence on clinical diagnosis, invasive tests, and treatment. Lancet Neurol. 2009 Oct;8(10):959-68. doi: 10.1016/S1474-4422(09)70209-1.

Reference Type BACKGROUND
PMID: 19747657 (View on PubMed)

Bogduk N. Cervicogenic headache: anatomic basis and pathophysiologic mechanisms. Curr Pain Headache Rep. 2001 Aug;5(4):382-6. doi: 10.1007/s11916-001-0029-7.

Reference Type BACKGROUND
PMID: 11403743 (View on PubMed)

Dumas JP, Arsenault AB, Boudreau G, Magnoux E, Lepage Y, Bellavance A, Loisel P. Physical impairments in cervicogenic headache: traumatic vs. nontraumatic onset. Cephalalgia. 2001 Nov;21(9):884-93. doi: 10.1046/j.1468-2982.2001.00264.x.

Reference Type BACKGROUND
PMID: 11903282 (View on PubMed)

Manchikanti L, Pampati V, Kaye AD, Hirsch JA. Cost Utility Analysis of Cervical Therapeutic Medial Branch Blocks in Managing Chronic Neck Pain. Int J Med Sci. 2017 Oct 15;14(13):1307-1316. doi: 10.7150/ijms.20755. eCollection 2017.

Reference Type BACKGROUND
PMID: 29200944 (View on PubMed)

Frazer A, Williams J, Spittles M, Rantalainen T, Kidgell D. Anodal transcranial direct current stimulation of the motor cortex increases cortical voluntary activation and neural plasticity. Muscle Nerve. 2016 Nov;54(5):903-913. doi: 10.1002/mus.25143. Epub 2016 May 20.

Reference Type BACKGROUND
PMID: 27065472 (View on PubMed)

Rroji O, van Kuyck K, Nuttin B, Wenderoth N. Anodal tDCS over the Primary Motor Cortex Facilitates Long-Term Memory Formation Reflecting Use-Dependent Plasticity. PLoS One. 2015 May 21;10(5):e0127270. doi: 10.1371/journal.pone.0127270. eCollection 2015.

Reference Type BACKGROUND
PMID: 25996937 (View on PubMed)

Zaninotto AL, El-Hagrassy MM, Green JR, Babo M, Paglioni VM, Benute GG, Paiva WS. Transcranial direct current stimulation (tDCS) effects on traumatic brain injury (TBI) recovery: A systematic review. Dement Neuropsychol. 2019 Apr-Jun;13(2):172-179. doi: 10.1590/1980-57642018dn13-020005.

Reference Type BACKGROUND
PMID: 31285791 (View on PubMed)

Wessel MJ, Zimerman M, Hummel FC. Non-invasive brain stimulation: an interventional tool for enhancing behavioral training after stroke. Front Hum Neurosci. 2015 May 15;9:265. doi: 10.3389/fnhum.2015.00265. eCollection 2015.

Reference Type BACKGROUND
PMID: 26029083 (View on PubMed)

O'Connell NE, Marston L, Spencer S, DeSouza LH, Wand BM. Non-invasive brain stimulation techniques for chronic pain. Cochrane Database Syst Rev. 2018 Apr 13;4(4):CD008208. doi: 10.1002/14651858.CD008208.pub5.

Reference Type BACKGROUND
PMID: 29652088 (View on PubMed)

Begemann MJ, Brand BA, Curcic-Blake B, Aleman A, Sommer IE. Efficacy of non-invasive brain stimulation on cognitive functioning in brain disorders: a meta-analysis. Psychol Med. 2020 Nov;50(15):2465-2486. doi: 10.1017/S0033291720003670. Epub 2020 Oct 19.

Reference Type BACKGROUND
PMID: 33070785 (View on PubMed)

Stilling JM, Monchi O, Amoozegar F, Debert CT. Transcranial Magnetic and Direct Current Stimulation (TMS/tDCS) for the Treatment of Headache: A Systematic Review. Headache. 2019 Mar;59(3):339-357. doi: 10.1111/head.13479. Epub 2019 Jan 23.

Reference Type BACKGROUND
PMID: 30671941 (View on PubMed)

Rahimi MD, Fadardi JS, Saeidi M, Bigdeli I, Kashiri R. Effectiveness of cathodal tDCS of the primary motor or sensory cortex in migraine: A randomized controlled trial. Brain Stimul. 2020 May-Jun;13(3):675-682. doi: 10.1016/j.brs.2020.02.012. Epub 2020 Feb 14.

Reference Type BACKGROUND
PMID: 32289696 (View on PubMed)

Andrade SM, de Brito Aranha REL, de Oliveira EA, de Mendonca CTPL, Martins WKN, Alves NT, Fernandez-Calvo B. Transcranial direct current stimulation over the primary motor vs prefrontal cortex in refractory chronic migraine: A pilot randomized controlled trial. J Neurol Sci. 2017 Jul 15;378:225-232. doi: 10.1016/j.jns.2017.05.007. Epub 2017 May 3.

Reference Type BACKGROUND
PMID: 28566169 (View on PubMed)

Dunning JR, Butts R, Mourad F, Young I, Fernandez-de-Las Penas C, Hagins M, Stanislawski T, Donley J, Buck D, Hooks TR, Cleland JA. Upper cervical and upper thoracic manipulation versus mobilization and exercise in patients with cervicogenic headache: a multi-center randomized clinical trial. BMC Musculoskelet Disord. 2016 Feb 6;17:64. doi: 10.1186/s12891-016-0912-3.

Reference Type BACKGROUND
PMID: 26852024 (View on PubMed)

Fernandez M, Moore C, Tan J, Lian D, Nguyen J, Bacon A, Christie B, Shen I, Waldie T, Simonet D, Bussieres A. Spinal manipulation for the management of cervicogenic headache: A systematic review and meta-analysis. Eur J Pain. 2020 Oct;24(9):1687-1702. doi: 10.1002/ejp.1632. Epub 2020 Jul 20.

Reference Type BACKGROUND
PMID: 32621321 (View on PubMed)

Chaibi A, Russell MB. Manual therapies for cervicogenic headache: a systematic review. J Headache Pain. 2012 Jul;13(5):351-9. doi: 10.1007/s10194-012-0436-7. Epub 2012 Mar 30.

Reference Type BACKGROUND
PMID: 22460941 (View on PubMed)

Debarnot U, Neveu R, Samaha Y, Saruco E, Macintyre T, Guillot A. Acquisition and consolidation of implicit motor learning with physical and mental practice across multiple days of anodal tDCS. Neurobiol Learn Mem. 2019 Oct;164:107062. doi: 10.1016/j.nlm.2019.107062. Epub 2019 Aug 1.

Reference Type BACKGROUND
PMID: 31377178 (View on PubMed)

Lefebvre S, Laloux P, Peeters A, Desfontaines P, Jamart J, Vandermeeren Y. Dual-tDCS Enhances Online Motor Skill Learning and Long-Term Retention in Chronic Stroke Patients. Front Hum Neurosci. 2013 Jan 9;6:343. doi: 10.3389/fnhum.2012.00343. eCollection 2012.

Reference Type BACKGROUND
PMID: 23316151 (View on PubMed)

Hatem SM, Saussez G, Della Faille M, Prist V, Zhang X, Dispa D, Bleyenheuft Y. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery. Front Hum Neurosci. 2016 Sep 13;10:442. doi: 10.3389/fnhum.2016.00442. eCollection 2016.

Reference Type BACKGROUND
PMID: 27679565 (View on PubMed)

Antal A, Alekseichuk I, Bikson M, Brockmoller J, Brunoni AR, Chen R, Cohen LG, Dowthwaite G, Ellrich J, Floel A, Fregni F, George MS, Hamilton R, Haueisen J, Herrmann CS, Hummel FC, Lefaucheur JP, Liebetanz D, Loo CK, McCaig CD, Miniussi C, Miranda PC, Moliadze V, Nitsche MA, Nowak R, Padberg F, Pascual-Leone A, Poppendieck W, Priori A, Rossi S, Rossini PM, Rothwell J, Rueger MA, Ruffini G, Schellhorn K, Siebner HR, Ugawa Y, Wexler A, Ziemann U, Hallett M, Paulus W. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017 Sep;128(9):1774-1809. doi: 10.1016/j.clinph.2017.06.001. Epub 2017 Jun 19.

Reference Type BACKGROUND
PMID: 28709880 (View on PubMed)

Cote P, Yu H, Shearer HM, Randhawa K, Wong JJ, Mior S, Ameis A, Carroll LJ, Nordin M, Varatharajan S, Sutton D, Southerst D, Jacobs C, Stupar M, Taylor-Vaisey A, Gross DP, Brison RJ, Paulden M, Ammendolia C, Cassidy JD, Loisel P, Marshall S, Bohay RN, Stapleton J, Lacerte M. Non-pharmacological management of persistent headaches associated with neck pain: A clinical practice guideline from the Ontario protocol for traffic injury management (OPTIMa) collaboration. Eur J Pain. 2019 Jul;23(6):1051-1070. doi: 10.1002/ejp.1374. Epub 2019 Feb 28.

Reference Type BACKGROUND
PMID: 30707486 (View on PubMed)

Rani M, Kaur J. Effectiveness of different physiotherapy interventions in the management of cervicogenic headache: a pilot randomized controlled trial. J Man Manip Ther. 2022 Apr;30(2):96-104. doi: 10.1080/10669817.2021.1962687. Epub 2021 Aug 10.

Reference Type BACKGROUND
PMID: 34374330 (View on PubMed)

Houts CR, McGinley JS, Wirth RJ, Cady R, Lipton RB. Reliability and validity of the 6-item Headache Impact Test in chronic migraine from the PROMISE-2 study. Qual Life Res. 2021 Mar;30(3):931-943. doi: 10.1007/s11136-020-02668-2. Epub 2020 Oct 20.

Reference Type BACKGROUND
PMID: 33079313 (View on PubMed)

Eyres S, Carey A, Gilworth G, Neumann V, Tennant A. Construct validity and reliability of the Rivermead Post-Concussion Symptoms Questionnaire. Clin Rehabil. 2005 Dec;19(8):878-87. doi: 10.1191/0269215505cr905oa.

Reference Type BACKGROUND
PMID: 16323387 (View on PubMed)

Jabbari S, Salahzadeh Z, Sarbakhsh P, Rezaei M, Farhoudi M, Ghodrati M. Validity and Reliability of Persian Version of Henry Ford Hospital Headache Disability Inventory Questionnaire. Arch Iran Med. 2021 Oct 1;24(10):752-758. doi: 10.34172/aim.2021.111.

Reference Type BACKGROUND
PMID: 34816697 (View on PubMed)

Robinson-Papp J, George MC, Wongmek A, Nmashie A, Merlin JS, Ali Y, Epstein L, Green M, Serban S, Sheth P, Simpson DM. The Quantitative Analgesic Questionnaire: A Tool to Capture Patient-Reported Chronic Pain Medication Use. J Pain Symptom Manage. 2015 Sep;50(3):381-6. doi: 10.1016/j.jpainsymman.2015.03.013. Epub 2015 Apr 23.

Reference Type BACKGROUND
PMID: 25912277 (View on PubMed)

Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001 Sep;16(9):606-13. doi: 10.1046/j.1525-1497.2001.016009606.x.

Reference Type BACKGROUND
PMID: 11556941 (View on PubMed)

Lowe B, Decker O, Muller S, Brahler E, Schellberg D, Herzog W, Herzberg PY. Validation and standardization of the Generalized Anxiety Disorder Screener (GAD-7) in the general population. Med Care. 2008 Mar;46(3):266-74. doi: 10.1097/MLR.0b013e318160d093.

Reference Type BACKGROUND
PMID: 18388841 (View on PubMed)

Young IA PT, DSc, Dunning J PT, DPT, Butts R PT, PhD, Mourad F PT, DPT, Cleland JA PT, PhD. Reliability, construct validity, and responsiveness of the neck disability index and numeric pain rating scale in patients with mechanical neck pain without upper extremity symptoms. Physiother Theory Pract. 2019 Dec;35(12):1328-1335. doi: 10.1080/09593985.2018.1471763. Epub 2018 Jun 1.

Reference Type BACKGROUND
PMID: 29856244 (View on PubMed)

James G, Doe T. The craniocervical flexion test: intra-tester reliability in asymptomatic subjects. Physiother Res Int. 2010 Sep;15(3):144-9. doi: 10.1002/pri.456.

Reference Type BACKGROUND
PMID: 20146239 (View on PubMed)

Sebastian D, Chovvath R, Malladi R. Cervical extensor endurance test: a reliability study. J Bodyw Mov Ther. 2015 Apr;19(2):213-6. doi: 10.1016/j.jbmt.2014.04.014. Epub 2014 Apr 18.

Reference Type BACKGROUND
PMID: 25892374 (View on PubMed)

Versteegh T, Beaudet D, Greenbaum M, Hellyer L, Tritton A, Walton D. Evaluating the reliability of a novel neck-strength assessment protocol for healthy adults using self-generated resistance with a hand-held dynamometer. Physiother Can. 2015 Winter;67(1):58-64. doi: 10.3138/ptc.2013-66.

Reference Type BACKGROUND
PMID: 25931654 (View on PubMed)

Cleland BT, Galick M, Huckstep A, Lenhart L, Madhavan S. Feasibility and Safety of Transcranial Direct Current Stimulation in an Outpatient Rehabilitation Setting After Stroke. Brain Sci. 2020 Oct 9;10(10):719. doi: 10.3390/brainsci10100719.

Reference Type BACKGROUND
PMID: 33050340 (View on PubMed)

Osman A, Barrios FX, Kopper BA, Hauptmann W, Jones J, O'Neill E. Factor structure, reliability, and validity of the Pain Catastrophizing Scale. J Behav Med. 1997 Dec;20(6):589-605. doi: 10.1023/a:1025570508954.

Reference Type BACKGROUND
PMID: 9429990 (View on PubMed)

Stark RG, Reitmeir P, Leidl R, Konig HH. Validity, reliability, and responsiveness of the EQ-5D in inflammatory bowel disease in Germany. Inflamm Bowel Dis. 2010 Jan;16(1):42-51. doi: 10.1002/ibd.20989.

Reference Type BACKGROUND
PMID: 19475674 (View on PubMed)

Harris KD, Heer DM, Roy TC, Santos DM, Whitman JM, Wainner RS. Reliability of a measurement of neck flexor muscle endurance. Phys Ther. 2005 Dec;85(12):1349-55.

Reference Type BACKGROUND
PMID: 16305273 (View on PubMed)

Jobin K, Campbell C, Schabrun SM, Schneider KJ, Smith A, Debert CT. The safety and feasibility of transcranial direct current stimulation combined with conservative treatment for patients with cervicogenic headaches: A double-blinded randomized control study protocol. Contemp Clin Trials Commun. 2024 Sep 19;42:101370. doi: 10.1016/j.conctc.2024.101370. eCollection 2024 Dec.

Reference Type DERIVED
PMID: 39391228 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

REB22-0890

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Mangement of Cervicogenic Headache by Maual Therapy
NCT07310823 ENROLLING_BY_INVITATION NA