Investigation of the Efficacy of tDCS in the Treatment of Complex Regional Pain Syndrome (CRPS) Type 1
NCT ID: NCT01960400
Last Updated: 2017-02-06
Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
22 participants
INTERVENTIONAL
2013-04-30
2015-06-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Effects of tDCS and Physical Therapy in Chronic Migraine
NCT05706077
Motor Cortex as a Research & Therapeutic Target in TMD
NCT02247063
Direct Current Stimulation for Treatment of Fibromyalgia
NCT02704611
High Frequency Impulse Therapy for Neuropathic Pain in NMOSD
NCT04614454
Non Invasive Neurostimulation Technology for the Treatment of Type I Complex Regional Pain Syndrome (CRPS I)
NCT05052736
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Methodology: To achieve the first objective, we will recruit adults diagnosed with CRPS type 1 via established collaborations with different physicians from our university affiliated hospital. Participants will be randomly allocated into one of the two treatment groups A) experimental group, which will receive the GMI and tDCS stimulation; B) control group, which will receive GMI and sham \[placebo\] tDCS stimulation. GMI treatment is composed of a three-phase protocol, each lasting two weeks. The GMI treatments will be performed using software and well-established procedures (www.noigroup.com). For its part, the tDCS will be applied for 5 consecutive days during the first 2 weeks of phase 1 and once a week during the 4 other weeks. The anodic (positive) stimulation over the motor cortex (M1) contralateral of the affected limb is sought to modulate cortical excitability and promote pain inhibition and cortical reorganization. Sample size estimates (β:80%,α 5%) show that 15 subjects/group will be necessary.
Anticipated results and impact of the proposed project: This project will allow us to investigate the therapeutic efficacy of an innovative approach to the treatment of CRPS, primarily for the purpose of enhancing the clinical outcomes of GMI. In the event of positive results, we will be able to further examine the therapeutic benefits of this modality in a larger clientele and even in other populations (i.e., patients with chronic low back pain). In addition, our results may contribute to the creation of a clinical practice guide, since there currently is insufficient evidence-based data to establish guidelines regarding the non-pharmacological treatment of CRPS. Finally, MRI/fMRI analysis will help us to capture the phenomenon of tDCS-driven cortical reorganization.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
TRIPLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
GMI + tDCS
Graded motor imagery (GMI) + tDCS
transcranial direct current stimulation (tDCS) (active or placebo)
TDCS was delivered according to the method described by Fregni et al. (2006) and the safety parameters related to tDCS application were respected (DaSilva et al., 2011). Direct current was delivered using a battery-driven constant current stimulator coupled to saline-soaked (0.9% NaCl) sponge electrodes (5 X 7 cm). Anodal stimulation was delivered over the M1; the anode was placed over C3 or C4 position in the 10/20 system for the EEG electrode position, contralateral to the affected limb, and the cathode over the opposite supraorbital area (i.e. ipsilateral to the affected limb). In the laboratory, a constant current of an intensity of 2 mA was applied for 20 min/day X 5 consecutive days during the first and the second weeks of GMI. To help maintain the potential effects of the neurostimulation, the tDCS was also applied simultaneously with GMI once a week during the 2 other phases until the end of the six weeks GMI program, for a total of 14 treatment sessions.
Graded motor imagery (GMI)
The treatment was performed using a software (Recognise™ online) provided by NOI group (http://www.noigroup.com/recognise). As an alternative to the software (for patients without an internet access), the patient could do the exercises with a Recognise™ Flash Cards set consists of 25 left and 25 right matching images (upper limb or lower limb). Using standardized procedures, inspired from the randomized controlled trial conducted by Moseley (2004, 2006), the participants performed the therapy at home, 10 minutes per session, 3x/day, 6 days/week, using the computer software and a mirror box (Lagueux et al., 2012).
GMI + sham TDCS
Graded motor imagery (GMI) + sham tDCS
transcranial direct current stimulation (tDCS) (active or placebo)
TDCS was delivered according to the method described by Fregni et al. (2006) and the safety parameters related to tDCS application were respected (DaSilva et al., 2011). Direct current was delivered using a battery-driven constant current stimulator coupled to saline-soaked (0.9% NaCl) sponge electrodes (5 X 7 cm). Anodal stimulation was delivered over the M1; the anode was placed over C3 or C4 position in the 10/20 system for the EEG electrode position, contralateral to the affected limb, and the cathode over the opposite supraorbital area (i.e. ipsilateral to the affected limb). In the laboratory, a constant current of an intensity of 2 mA was applied for 20 min/day X 5 consecutive days during the first and the second weeks of GMI. To help maintain the potential effects of the neurostimulation, the tDCS was also applied simultaneously with GMI once a week during the 2 other phases until the end of the six weeks GMI program, for a total of 14 treatment sessions.
Graded motor imagery (GMI)
The treatment was performed using a software (Recognise™ online) provided by NOI group (http://www.noigroup.com/recognise). As an alternative to the software (for patients without an internet access), the patient could do the exercises with a Recognise™ Flash Cards set consists of 25 left and 25 right matching images (upper limb or lower limb). Using standardized procedures, inspired from the randomized controlled trial conducted by Moseley (2004, 2006), the participants performed the therapy at home, 10 minutes per session, 3x/day, 6 days/week, using the computer software and a mirror box (Lagueux et al., 2012).
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
transcranial direct current stimulation (tDCS) (active or placebo)
TDCS was delivered according to the method described by Fregni et al. (2006) and the safety parameters related to tDCS application were respected (DaSilva et al., 2011). Direct current was delivered using a battery-driven constant current stimulator coupled to saline-soaked (0.9% NaCl) sponge electrodes (5 X 7 cm). Anodal stimulation was delivered over the M1; the anode was placed over C3 or C4 position in the 10/20 system for the EEG electrode position, contralateral to the affected limb, and the cathode over the opposite supraorbital area (i.e. ipsilateral to the affected limb). In the laboratory, a constant current of an intensity of 2 mA was applied for 20 min/day X 5 consecutive days during the first and the second weeks of GMI. To help maintain the potential effects of the neurostimulation, the tDCS was also applied simultaneously with GMI once a week during the 2 other phases until the end of the six weeks GMI program, for a total of 14 treatment sessions.
Graded motor imagery (GMI)
The treatment was performed using a software (Recognise™ online) provided by NOI group (http://www.noigroup.com/recognise). As an alternative to the software (for patients without an internet access), the patient could do the exercises with a Recognise™ Flash Cards set consists of 25 left and 25 right matching images (upper limb or lower limb). Using standardized procedures, inspired from the randomized controlled trial conducted by Moseley (2004, 2006), the participants performed the therapy at home, 10 minutes per session, 3x/day, 6 days/week, using the computer software and a mirror box (Lagueux et al., 2012).
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
* Central nervous system disease;
* Other upper limb conditions;
* Diagnosis of psychiatric condition;
* Dyslexia and/or severe visual impairment;
* Presence of contraindication of tDCS (brain implant, history of severe cranial trauma, severe or frequent headaches, chronic skin conditions);
* Sympathetic blocks for less than one month;
* Pregnancy.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Université de Sherbrooke
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Yannick Tousignant-Laflamme
PT Ph.D.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Yannick Tousignant-Laflamme, PhD
Role: PRINCIPAL_INVESTIGATOR
Université de Sherbrooke
Patricia Bourgault, PhD
Role: PRINCIPAL_INVESTIGATOR
Université de Sherbrooke
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Sherbrooke, Quebec, Canada
Countries
Review the countries where the study has at least one active or historical site.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
12-116
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.