Mindfulness in Post Acute Sequelae of SARS-CoV-2 Infection (PASC) Dysautonomia
NCT ID: NCT05566379
Last Updated: 2024-06-14
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
20 participants
INTERVENTIONAL
2023-02-28
2023-07-29
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
The Effects of Mindfulness Meditation on Sleep Quality and Perceived Stress
NCT05253092
Micromanaging Human Sleep Physiology to Treat Sleep Apnea and Other Disorders
NCT06926036
Mindfulness-Based Stress Reduction Versus Lifestyle Intervention for Long-Haul Covid-19 Parosmia
NCT06789952
COVID-19: Respiratory and Sleep Follow-up
NCT04406324
Virtual Patient Groups for Sarcoidosis Associated Fatigue
NCT07073963
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
This single-arm study uses a one group pretest/posttest design. A convenience sample of patients will be recruited from the Ahmanson-University of California Los Angeles (UCLA) COVID-19 Cardiology Specialty Clinic and UCLA Long COVID Program.
Outcomes Measures:
Once consented, eligible participants will complete a baseline demographics survey, preintervention assessments including the composite autonomic symptom scoring (COMPASS-31), outcome measures questionnaires for perceived stress, anxiety, depression, fatigue, resilience, sleep, event specific distress, well-being and quality of life. A peripheral blood collection device for evaluation of inflammatory gene expression will be performed along with an active stand test and 6- minute walk prior to the mindfulness intervention. The same measures will be collected following completion of the intervention. Additionally, a logbook of patient self-reported practice frequency will be reviewed, and a focused 3 question audio recorded interview will be conducted at the post intervention visit. At 4-week follow-up post intervention, the final set of assessment questionnaires, and a 3-question mindfulness experience survey will be collected.
Intervention:
Participants will complete a virtual group based 6-week mindfulness meditation-based intervention, Mindful Awareness Practices (MAPs), developed by Diana Winston and colleagues at the Mindful Awareness Research Center (MARC) at UCLA. In response to COVID-19 precautions participants will meet virtually for six weekly, 2-hour group sessions. The group size is estimated at 15 participants.
MAPs is a standardized intervention that has been used in several previous studies. MAPS includes presentation of theoretical framework and materials on mindfulness, relaxation, and the mind-body connection, and experiential practice of meditation. Lecture, discussion, and group process focus on solving problems concerning barriers to effective practice, working with difficult thoughts and emotions, managing pain, and cultivation of loving kindness. Written materials are provided with a summary of information covered each week. Additionally, participants are instructed to practice mindfulness exercises at home on a daily basis (5-20 minutes/day) and advised in the informal use of mindfulness in daily life. Participants will be asked to keep a self-reported log of their daily practice. Classes will be led by experienced mindfulness instructors who received specialized training at the UCLA MARC Center.
Overview:
Baseline Visit (in person): collect within 1-2 week(s) prior to the intervention.
Consent Baseline demographics survey COMPASS-31: the composite autonomic symptom score Questionnaires: perceived stress (PSS), anxiety (GAD-7), depression (PHQ 8), event specific distress (IES-R), fatigue (FSI), sleep (ISI), well-being (MHC-SF), resilience (CD-RISC10), QOL (SF-20).
Tasso device blood collection for evaluation of inflammatory gene expression. Perform an active stand test Perform 6-minute walk
Post Intervention Visit (in person): collect within 1-2 weeks post intervention completion COMPASS-31: the composite autonomic symptom score Questionnaires: perceived stress (PSS), anxiety (GAD-7), depression (PHQ 8), event specific distress (IES-R), fatigue (FSI), sleep (ISI), well-being (MHC-SF), resilience (CD-RISC10), QOL (SF-20).
Tasso device blood collection for evaluation of inflammatory gene expression Perform an active stand test Perform Six-minute walk Three question mindfulness experience focused interview Frequency of Practice Logbook review
4-Week Post Intervention Visit (remote link / in person NOT required): collect 4 weeks (+2) post intervention Questionnaires: perceived stress (PSS), anxiety (GAD-7), depression (PHQ 8), event specific distress (IES-R), fatigue (FSI), sleep (ISI), well-being (MHC-SF), resilience (CD-RISC10), QOL (SF-20). 3-question Likert mindfulness experience survey
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
SUPPORTIVE_CARE
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Mindfulness Intervention
All participants will attend a virtual 6-week course entitled Mindful Awareness Practices (MAPs) created, hosted and led by expert facilitators from the Mindful Awareness Research Center at UCLA. Participants will learn Mindful concepts and a variety of Mindfulness practices. This intervention will consist of a mix of lecture, practice, group feedback, and discussion regarding mindfulness. Mindfulness is the mental state achieved by focusing one's awareness on the present while acknowledging and accepting any feelings, thoughts, or bodily sensations. MAPs classes meets weekly for two hours per week for six weeks. Participants are encouraged to complete some daily meditation practice starting at five minutes a day and working up to 20 minutes daily by the end of the course.
Mindfulness - Mindful Awareness Practices ( MAPs)
All participants will attend a virtual 6-week course entitled Mindful Awareness Practices (MAPs) created, hosted and led by expert facilitators from the Mindful Awareness Research Center at UCLA. Participants will learn Mindful concepts and a variety of Mindfulness practices. This intervention will consist of a mix of lecture, practice, group feedback, and discussion regarding mindfulness. Mindfulness is the mental state achieved by focusing one's awareness on the present while acknowledging and accepting any feelings, thoughts, or bodily sensations. MAPs classes meets weekly for two hours per week for six weeks. Participants are encouraged to complete some daily meditation practice starting at five minutes a day and working up to 20 minutes daily by the end of the course.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Mindfulness - Mindful Awareness Practices ( MAPs)
All participants will attend a virtual 6-week course entitled Mindful Awareness Practices (MAPs) created, hosted and led by expert facilitators from the Mindful Awareness Research Center at UCLA. Participants will learn Mindful concepts and a variety of Mindfulness practices. This intervention will consist of a mix of lecture, practice, group feedback, and discussion regarding mindfulness. Mindfulness is the mental state achieved by focusing one's awareness on the present while acknowledging and accepting any feelings, thoughts, or bodily sensations. MAPs classes meets weekly for two hours per week for six weeks. Participants are encouraged to complete some daily meditation practice starting at five minutes a day and working up to 20 minutes daily by the end of the course.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Previous SARS-CoV-2 infection confirmed by Polymerase chain reaction (PCR) testing and diagnoses of PASC and dysautonomia confirmed by objective testing (e.g., autonomic reflex screen, active stand test)
* Ability to comprehend English and complete assessments and patient-reported surveys
* Availability of a smartphone, tablet, or computer with Internet access
Exclusion Criteria
* Current participation regular mindfulness practice
* Current enrollment in another COVID-19 related study.
18 Years
54 Years
FEMALE
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of California, Los Angeles
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Jeffrey J. Hsu
Principal Investigator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Jeffrey J. Hsu, MD, PhD
Role: PRINCIPAL_INVESTIGATOR
University of California, Los Angeles
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
UCLA Health
Los Angeles, California, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Barizien N, Le Guen M, Russel S, Touche P, Huang F, Vallee A. Clinical characterization of dysautonomia in long COVID-19 patients. Sci Rep. 2021 Jul 7;11(1):14042. doi: 10.1038/s41598-021-93546-5.
Bisaccia G, Ricci F, Recce V, Serio A, Iannetti G, Chahal AA, Stahlberg M, Khanji MY, Fedorowski A, Gallina S. Post-Acute Sequelae of COVID-19 and Cardiovascular Autonomic Dysfunction: What Do We Know? J Cardiovasc Dev Dis. 2021 Nov 15;8(11):156. doi: 10.3390/jcdd8110156.
Raj SR, Arnold AC, Barboi A, Claydon VE, Limberg JK, Lucci VM, Numan M, Peltier A, Snapper H, Vernino S; American Autonomic Society. Long-COVID postural tachycardia syndrome: an American Autonomic Society statement. Clin Auton Res. 2021 Jun;31(3):365-368. doi: 10.1007/s10286-021-00798-2. Epub 2021 Mar 19.
Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, Cook JR, Nordvig AS, Shalev D, Sehrawat TS, Ahluwalia N, Bikdeli B, Dietz D, Der-Nigoghossian C, Liyanage-Don N, Rosner GF, Bernstein EJ, Mohan S, Beckley AA, Seres DS, Choueiri TK, Uriel N, Ausiello JC, Accili D, Freedberg DE, Baldwin M, Schwartz A, Brodie D, Garcia CK, Elkind MSV, Connors JM, Bilezikian JP, Landry DW, Wan EY. Post-acute COVID-19 syndrome. Nat Med. 2021 Apr;27(4):601-615. doi: 10.1038/s41591-021-01283-z. Epub 2021 Mar 22.
Sykes DL, Holdsworth L, Jawad N, Gunasekera P, Morice AH, Crooks MG. Post-COVID-19 Symptom Burden: What is Long-COVID and How Should We Manage It? Lung. 2021 Apr;199(2):113-119. doi: 10.1007/s00408-021-00423-z. Epub 2021 Feb 11.
Sudre CH, Murray B, Varsavsky T, Graham MS, Penfold RS, Bowyer RC, Pujol JC, Klaser K, Antonelli M, Canas LS, Molteni E, Modat M, Jorge Cardoso M, May A, Ganesh S, Davies R, Nguyen LH, Drew DA, Astley CM, Joshi AD, Merino J, Tsereteli N, Fall T, Gomez MF, Duncan EL, Menni C, Williams FMK, Franks PW, Chan AT, Wolf J, Ourselin S, Spector T, Steves CJ. Attributes and predictors of long COVID. Nat Med. 2021 Apr;27(4):626-631. doi: 10.1038/s41591-021-01292-y. Epub 2021 Mar 10.
Antonova E, Schlosser K, Pandey R, Kumari V. Coping With COVID-19: Mindfulness-Based Approaches for Mitigating Mental Health Crisis. Front Psychiatry. 2021 Mar 23;12:563417. doi: 10.3389/fpsyt.2021.563417. eCollection 2021.
Blanck P, Perleth S, Heidenreich T, Kroger P, Ditzen B, Bents H, Mander J. Effects of mindfulness exercises as stand-alone intervention on symptoms of anxiety and depression: Systematic review and meta-analysis. Behav Res Ther. 2018 Mar;102:25-35. doi: 10.1016/j.brat.2017.12.002. Epub 2017 Dec 20.
Deng J, Zhou F, Hou W, Silver Z, Wong CY, Chang O, Huang E, Zuo QK. The prevalence of depression, anxiety, and sleep disturbances in COVID-19 patients: a meta-analysis. Ann N Y Acad Sci. 2021 Feb;1486(1):90-111. doi: 10.1111/nyas.14506. Epub 2020 Oct 2.
Johansson M, Stahlberg M, Runold M, Nygren-Bonnier M, Nilsson J, Olshansky B, Bruchfeld J, Fedorowski A. Long-Haul Post-COVID-19 Symptoms Presenting as a Variant of Postural Orthostatic Tachycardia Syndrome: The Swedish Experience. JACC Case Rep. 2021 Apr;3(4):573-580. doi: 10.1016/j.jaccas.2021.01.009. Epub 2021 Mar 10.
Graham EL, Clark JR, Orban ZS, Lim PH, Szymanski AL, Taylor C, DiBiase RM, Jia DT, Balabanov R, Ho SU, Batra A, Liotta EM, Koralnik IJ. Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized Covid-19 "long haulers". Ann Clin Transl Neurol. 2021 May;8(5):1073-1085. doi: 10.1002/acn3.51350. Epub 2021 Mar 30.
Johns SA, Tarver WL, Secinti E, Mosher CE, Stutz PV, Carnahan JL, Talib TL, Shanahan ML, Faidley MT, Kidwell KM, Rand KL. Effects of mindfulness-based interventions on fatigue in cancer survivors: A systematic review and meta-analysis of randomized controlled trials. Crit Rev Oncol Hematol. 2021 Apr;160:103290. doi: 10.1016/j.critrevonc.2021.103290. Epub 2021 Mar 4.
Mazza MG, De Lorenzo R, Conte C, Poletti S, Vai B, Bollettini I, Melloni EMT, Furlan R, Ciceri F, Rovere-Querini P; COVID-19 BioB Outpatient Clinic Study group; Benedetti F. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav Immun. 2020 Oct;89:594-600. doi: 10.1016/j.bbi.2020.07.037. Epub 2020 Jul 30.
Pascoe MC, Thompson DR, Jenkins ZM, Ski CF. Mindfulness mediates the physiological markers of stress: Systematic review and meta-analysis. J Psychiatr Res. 2017 Dec;95:156-178. doi: 10.1016/j.jpsychires.2017.08.004. Epub 2017 Aug 23.
Pascoe MC, de Manincor M, Tseberja J, Hallgren M, Baldwin PA, Parker AG. Psychobiological mechanisms underlying the mood benefits of meditation: A narrative review. Compr Psychoneuroendocrinol. 2021 Mar 10;6:100037. doi: 10.1016/j.cpnec.2021.100037. eCollection 2021 May.
Spijkerman MP, Pots WT, Bohlmeijer ET. Effectiveness of online mindfulness-based interventions in improving mental health: A review and meta-analysis of randomised controlled trials. Clin Psychol Rev. 2016 Apr;45:102-14. doi: 10.1016/j.cpr.2016.03.009. Epub 2016 Apr 1.
Simonelli C, Paneroni M, Vitacca M, Ambrosino N. Measures of physical performance in COVID-19 patients: a mapping review. Pulmonology. 2021 Nov-Dec;27(6):518-528. doi: 10.1016/j.pulmoe.2021.06.005. Epub 2021 Jun 24.
Zhang D, Lee EKP, Mak ECW, Ho CY, Wong SYS. Mindfulness-based interventions: an overall review. Br Med Bull. 2021 Jun 10;138(1):41-57. doi: 10.1093/bmb/ldab005.
Zou L, Sasaki JE, Zeng N, Wang C, Sun L. A Systematic Review With Meta-Analysis of Mindful Exercises on Rehabilitative Outcomes Among Poststroke Patients. Arch Phys Med Rehabil. 2018 Nov;99(11):2355-2364. doi: 10.1016/j.apmr.2018.04.010. Epub 2018 May 5.
Bower JE, Crosswell AD, Stanton AL, Crespi CM, Winston D, Arevalo J, Ma J, Cole SW, Ganz PA. Mindfulness meditation for younger breast cancer survivors: a randomized controlled trial. Cancer. 2015 Apr 15;121(8):1231-40. doi: 10.1002/cncr.29194. Epub 2014 Dec 23.
Boyle CC, Cole SW, Dutcher JM, Eisenberger NI, Bower JE. Changes in eudaimonic well-being and the conserved transcriptional response to adversity in younger breast cancer survivors. Psychoneuroendocrinology. 2019 May;103:173-179. doi: 10.1016/j.psyneuen.2019.01.024. Epub 2019 Jan 23.
Tawakol A, Ishai A, Takx RA, Figueroa AL, Ali A, Kaiser Y, Truong QA, Solomon CJ, Calcagno C, Mani V, Tang CY, Mulder WJ, Murrough JW, Hoffmann U, Nahrendorf M, Shin LM, Fayad ZA, Pitman RK. Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet. 2017 Feb 25;389(10071):834-845. doi: 10.1016/S0140-6736(16)31714-7. Epub 2017 Jan 12.
Scott-Sheldon LAJ, Gathright EC, Donahue ML, Balletto B, Feulner MM, DeCosta J, Cruess DG, Wing RR, Carey MP, Salmoirago-Blotcher E. Mindfulness-Based Interventions for Adults with Cardiovascular Disease: A Systematic Review and Meta-Analysis. Ann Behav Med. 2020 Jan 1;54(1):67-73. doi: 10.1093/abm/kaz020.
Shaygan M, Yazdani Z, Valibeygi A. The effect of online multimedia psychoeducational interventions on the resilience and perceived stress of hospitalized patients with COVID-19: a pilot cluster randomized parallel-controlled trial. BMC Psychiatry. 2021 Feb 11;21(1):93. doi: 10.1186/s12888-021-03085-6.
O'Donnell KT, Dunbar M, Speelman DL. Effectiveness of using a meditation app in reducing anxiety and improving well-being during the COVID-19 pandemic: A structured summary of a study protocol for a randomized controlled trial. Trials. 2020 Dec 9;21(1):1006. doi: 10.1186/s13063-020-04935-6.
Kubo A, Kurtovich E, McGinnis M, Aghaee S, Altschuler A, Quesenberry C Jr, Kolevska T, Liu R, Greyz-Yusupov N, Avins A. Pilot pragmatic randomized trial of mHealth mindfulness-based intervention for advanced cancer patients and their informal caregivers. Psychooncology. 2024 Feb;33(2):e5557. doi: 10.1002/pon.5557. Epub 2020 Oct 5.
Levine GN, Lange RA, Bairey-Merz CN, Davidson RJ, Jamerson K, Mehta PK, Michos ED, Norris K, Ray IB, Saban KL, Shah T, Stein R, Smith SC Jr; American Heart Association Council on Clinical Cardiology; Council on Cardiovascular and Stroke Nursing; and Council on Hypertension. Meditation and Cardiovascular Risk Reduction: A Scientific Statement From the American Heart Association. J Am Heart Assoc. 2017 Sep 28;6(10):e002218. doi: 10.1161/JAHA.117.002218.
Campbell-Sills L, Stein MB. Psychometric analysis and refinement of the Connor-davidson Resilience Scale (CD-RISC): Validation of a 10-item measure of resilience. J Trauma Stress. 2007 Dec;20(6):1019-28. doi: 10.1002/jts.20271.
Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav. 1983 Dec;24(4):385-96. No abstract available.
Finucane C, van Wijnen VK, Fan CW, Soraghan C, Byrne L, Westerhof BE, Freeman R, Fedorowski A, Harms MPM, Wieling W, Kenny R. A practical guide to active stand testing and analysis using continuous beat-to-beat non-invasive blood pressure monitoring. Clin Auton Res. 2019 Aug;29(4):427-441. doi: 10.1007/s10286-019-00606-y. Epub 2019 May 10.
Keyes CL, Wissing M, Potgieter JP, Temane M, Kruger A, van Rooy S. Evaluation of the mental health continuum-short form (MHC-SF) in setswana-speaking South Africans. Clin Psychol Psychother. 2008 May-Jun;15(3):181-92. doi: 10.1002/cpp.572.
Kroenke K, Strine TW, Spitzer RL, Williams JB, Berry JT, Mokdad AH. The PHQ-8 as a measure of current depression in the general population. J Affect Disord. 2009 Apr;114(1-3):163-73. doi: 10.1016/j.jad.2008.06.026. Epub 2008 Aug 27.
Sletten DM, Suarez GA, Low PA, Mandrekar J, Singer W. COMPASS 31: a refined and abbreviated Composite Autonomic Symptom Score. Mayo Clin Proc. 2012 Dec;87(12):1196-201. doi: 10.1016/j.mayocp.2012.10.013.
Spitzer RL, Kroenke K, Williams JB, Lowe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006 May 22;166(10):1092-7. doi: 10.1001/archinte.166.10.1092.
Weiss, D. S., & Marmar, C. R. (1996). The Impact of Event Scale - Revised. In J. Wilson & T. M. Keane (Eds.), Assessing psychological trauma and PTSD (pp. 399-411). New York: Guilford.
BALKE B. A SIMPLE FIELD TEST FOR THE ASSESSMENT OF PHYSICAL FITNESS. REP 63-6. Rep Civ Aeromed Res Inst US. 1963 Apr:1-8. No abstract available.
Hann DM, Jacobsen PB, Azzarello LM, Martin SC, Curran SL, Fields KK, Greenberg H, Lyman G. Measurement of fatigue in cancer patients: development and validation of the Fatigue Symptom Inventory. Qual Life Res. 1998 May;7(4):301-10. doi: 10.1023/a:1024929829627.
Bastien CH, Vallieres A, Morin CM. Validation of the Insomnia Severity Index as an outcome measure for insomnia research. Sleep Med. 2001 Jul;2(4):297-307. doi: 10.1016/s1389-9457(00)00065-4.
Stewart AL, Hays RD, Ware JE Jr. The MOS short-form general health survey. Reliability and validity in a patient population. Med Care. 1988 Jul;26(7):724-35. doi: 10.1097/00005650-198807000-00007. No abstract available.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
22-001020
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.