Social Media-based Vaccine Confidence and Hesitancy Monitoring
NCT ID: NCT05442762
Last Updated: 2022-07-05
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
WITHDRAWN
OBSERVATIONAL
2022-03-01
2022-06-24
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
To date, a growing body of literature has used social media platforms such as Twitter and weico for public health research. Large amounts of real time data posted on social media platforms can be used to quickly identify the public's attitudes on vaccines, as a way to support health communication and health promotion, messaging. However, textual data on social media is difficult to be analyzed. Recent progress in machine learning makes it possible to automatically analyze textual data on social media in real time.
In this study, the investigators will establish a social media surveillance and analysis platform on vaccines, develop a series of machine learning models to monitor vaccine confidence and early detect emerging vaccine-related risks, and assess public communication around vaccines. The investigators will assess the temporal and spatial distribution of vaccine confidence and hesitancy globally using Twitter data and in China using weico data, for all vaccines and Human Papilloma Virus(HPV) vaccine, respectively. Our study will guide the design of effective health communication strategies to improve vaccine confidence.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Communicating Human Papillomavirus Vaccine With Japanese Parents and Caregivers With Daughters Aged 12-18
NCT06347627
Testing The Effectiveness Of Two Interventions To Reduce Vaccine Hesitancy Among Adolescents
NCT06155877
Vaccine Social Media Randomized Intervention Trial
NCT01873040
Use of SMS and Interactive Reminders to Improve Timely Immunization Coverage
NCT03379467
Typhoid Vi Vaccine Effectiveness in Hechi, Guangxi, China
NCT00131833
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
2. Monitor vaccine confidence and hesitancy in real time: deep (supervised) machine learning models Deep learning model, a supervised machine learning technique, will be used to analyze text data on social media in real time according to the predefined vaccine confidence and hesitancy framework. The investigators will first manually annotate a subset of social media posts (20,000 posts) regarding vaccines. The initial manually-annotated posts are then used to train and evaluate deep learning models. Deep learning models with the best performance are selected and applied to classify all vaccine-related posts according to the vaccine confidence and hesitancy framework.
3. Monitor emerging concerns and sentiment swings in real time to early warn vaccine-related risks or crises: topic (unsupervised) machine learning models and linguistic analysis There are some topics outside of the predefined vaccine confidence and hesitancy framework used in deep learning models, and new topics emerge in any time. Vaccine crisis would influence public sentiments. Monitoring emerging topics and sentiment swings will provide early warning of vaccine-related risks or crises. Use Topic Modeling, an unsupervised machine learning technique that can automatically classify text to representative topics in social media, to monitor emerging topics and concerns regarding vaccines.
4. Assess public engagement on social media to inform effective health communication strategies: social media engagement analysis Besides posts data on social media, engagement data of posts are also available to be analyzed, including likes, comments, and shares of posts. The investigators will conduct social media engagement analysis to investigate public communication around vaccines online. This will guide the design of effective health communication strategies.
5. Establish social media surveillance and analysis platform for vaccine confidence and crisis Through the steps above, the investigators will establish a social media surveillance and analysis platform for vaccine confidence and crisis. Time-series trends, geographic variation, and associated factors of the indicators produced above will be presented to monitor vaccine confidence in real time, early warn emerging risks or crises, and inform effective health communication strategies.
6. Past research experience The investigators have conducted a series of relevant studies to analyze social media data using machine learning techniques during the COVID-19 epidemic, covering COVID-19 vaccine confidence and public response to COVID-19. These experiences make the current study feasible.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
OTHER
CROSS_SECTIONAL
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Global Database of Vaccine Related Posts
Tweets in English from Twitter and posts from weico from 2015 to 2022 for all vaccines. The investigators only included posts from individual accounts and excluded those from news, organizational accounts, or verified users.
No interventions assigned to this group
Global Database of HPV Vaccine Related Posts
Tweets in English from Twitter and posts from weico from 2015 to 2022 for HPV vaccine. The investigators only included posts from individual accounts and excluded those from news, organizational accounts, or verified users.
No interventions assigned to this group
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Published in 2015-2022
* English tweets
* Tweets/posts from personal accounts.
Exclusion Criteria
* Non English tweets.
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Merck Sharp & Dohme LLC
INDUSTRY
Fudan University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Zhiyuan Hou
Associate Professor
References
Explore related publications, articles, or registry entries linked to this study.
MacDonald NE; SAGE Working Group on Vaccine Hesitancy. Vaccine hesitancy: Definition, scope and determinants. Vaccine. 2015 Aug 14;33(34):4161-4. doi: 10.1016/j.vaccine.2015.04.036. Epub 2015 Apr 17.
Larson HJ, Jarrett C, Eckersberger E, Smith DM, Paterson P. Understanding vaccine hesitancy around vaccines and vaccination from a global perspective: a systematic review of published literature, 2007-2012. Vaccine. 2014 Apr 17;32(19):2150-9. doi: 10.1016/j.vaccine.2014.01.081. Epub 2014 Mar 2.
Sinnenberg L, Buttenheim AM, Padrez K, Mancheno C, Ungar L, Merchant RM. Twitter as a Tool for Health Research: A Systematic Review. Am J Public Health. 2017 Jan;107(1):e1-e8. doi: 10.2105/AJPH.2016.303512. Epub 2016 Nov 17.
Milinovich GJ, Williams GM, Clements AC, Hu W. Internet-based surveillance systems for monitoring emerging infectious diseases. Lancet Infect Dis. 2014 Feb;14(2):160-8. doi: 10.1016/S1473-3099(13)70244-5. Epub 2013 Nov 28.
Devlin J, Chang M-W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint, 2018, arXiv:181004805.
Larson HJ, Jarrett C, Schulz WS, Chaudhuri M, Zhou Y, Dube E, Schuster M, MacDonald NE, Wilson R; SAGE Working Group on Vaccine Hesitancy. Measuring vaccine hesitancy: The development of a survey tool. Vaccine. 2015 Aug 14;33(34):4165-75. doi: 10.1016/j.vaccine.2015.04.037. Epub 2015 Apr 18.
Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation. J Mach Learn Res, 2003, 3:993-1022.
Pennebaker J, Boyd R, Jordan K, et al. The development and psychometric properties of LIWC2015. Austin, TX: University of Texas at Austin, 2015.
Zhao N, Jiao D, Bai S, Zhu T. Evaluating the Validity of Simplified Chinese Version of LIWC in Detecting Psychological Expressions in Short Texts on Social Network Services. PLoS One. 2016 Jun 20;11(6):e0157947. doi: 10.1371/journal.pone.0157947. eCollection 2016.
Stone JA, Can SH. Linguistic analysis of municipal twitter feeds: Factors influencing frequency and engagement. Gov Inf Q, 2020, 37(4): 101468.
de Figueiredo A, Simas C, Karafillakis E, Paterson P, Larson HJ. Mapping global trends in vaccine confidence and investigating barriers to vaccine uptake: a large-scale retrospective temporal modelling study. Lancet. 2020 Sep 26;396(10255):898-908. doi: 10.1016/S0140-6736(20)31558-0. Epub 2020 Sep 10.
Szilagyi PG, Thomas K, Shah MD, Vizueta N, Cui Y, Vangala S, Kapteyn A. National Trends in the US Public's Likelihood of Getting a COVID-19 Vaccine-April 1 to December 8, 2020. JAMA. 2020 Dec 29;325(4):396-8. doi: 10.1001/jama.2020.26419. Online ahead of print.
Larson HJ, de Figueiredo A, Xiahong Z, Schulz WS, Verger P, Johnston IG, Cook AR, Jones NS. The State of Vaccine Confidence 2016: Global Insights Through a 67-Country Survey. EBioMedicine. 2016 Oct;12:295-301. doi: 10.1016/j.ebiom.2016.08.042. Epub 2016 Sep 13.
Abd-Alrazaq A, Alhuwail D, Househ M, Hamdi M, Shah Z. Top Concerns of Tweeters During the COVID-19 Pandemic: Infoveillance Study. J Med Internet Res. 2020 Apr 21;22(4):e19016. doi: 10.2196/19016.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
ECT2112016948
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.