Effects of Litebook EDGE™ Phototherapy on Academic Performance and Brain Activity

NCT ID: NCT05383690

Last Updated: 2022-05-20

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

26 participants

Study Classification

INTERVENTIONAL

Study Start Date

2017-03-27

Study Completion Date

2017-06-23

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

As children pass through puberty the timing of their sleep-wake cycle shifts and they experience a strong urge to stay up and awaken late. High school typically starts early in the morning and a significant percentage of normal adolescents arrive at school each day with an insufficient amount of sleep, which can take a substantial toll on their academic performance. As the primary reason for insufficient sleep is a naturally occurring propensity to stay up later in the evening it seems plausible that bright light treatment (BLT) at the appropriate time may phase advance biological clocks and potentially reverse this problem. Hence, the investigators are testing the hypothesis that consistent morning use of a light emitting diode (LED) BLT device (LiteBook Edge™) by healthy adolescents will shift the phase of their sleep wake cycle and enable them to receive an increased amount of sleep during the school week and perform better on tests of attention and academic performance and evidence signs of improved alertness. Alternatively, BLT could potentially enhance alertness through other mechanisms, such as a direct arousing effect, without exerting a discernible effect on circadian phase or sleep duration.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

As children pass through puberty the timing of their sleep-wake cycle shifts and they experience a strong urge to stay up and awaken late. Hence, a large percentage of normal adolescents arrive at school each day with an insufficient amount of sleep, which can take a substantial toll on their academic performance.

A growing number of human studies show that sleep promotes learning and memory. Conversely, sleep deprivation has a negative impact on cognitive and behavioral functions. Relatively few studies have examined effects of sleep deprivation on cognitive performance in adolescents. In these studies, total sleep deprivation was associated with impaired memory performance and diminished computational speed, while, partial sleep deprivation was associated with deficits in reasoning and verbal creativity. For example, male adolescents sleeping more than 8 hours per day had significantly higher reasoning ability than their peers who slept for less than 8 hours per day. Some studies reported that simpler cognitive processes such as working memory and computational speed may not be significantly affected by a single night of sleep limited to 4 to 5 hours. However, even mild sleep restriction of an hour or more, when persistent across days, can lead to memory problems as severe as seen following total sleep deprivation.

The sensitivity of the adolescent brain to subtle sleep impairments was highlighted in a study where 12-14-year-olds were allowed to play stimulating computer games or watch television right before bedtime. This experience prolonged sleep latency, increased stage 2 sleep and reduced slow wave sleep. This modest degree of sleep restriction significantly impaired verbal memory consolidation Suboptimal sleep duration in adolescents was also associated with poor performance on a serial digit-learning test during morning testing sessions, but not in afternoon sessions. Between 58-68% of high school students surveyed in Ontario report that they feel "really sleepy" between 8 and 10 A.M. Thus, achievement in early morning classes may suffer the most in sleep-deprived adolescents.

Fortunately, sleep only needs to be extended by a modest amount to enhance cognition in children. Sadeh showed that performance on memory, attention and vigilance tasks in children improved significantly after 1 hour of sleep extension on three consecutive nights. Gais and Backhaus have also shown the beneficial effects of sleep on memory consolidation in children and adolescents.

Overall, there is compelling scientific evidence that schoolchildren, particularly adolescents, are chronically sleep deprived, that the degree of sleep restriction they experience exerts demonstrable effects on memory encoding, consolidation and processing speed, and that even a modest increase in sleep will result in measurable improvements in cognitive function. The primary reason that adolescents are sleep deprived is due to a naturally occurring phase delay in their biological clock, resulting in a propensity to stay up until late in the evening which is incompatible with the early rise times schools typically require. Light treatments at the appropriate time can phase advance the biological clock, potentially reversing this problem.

The hypothesis that the investigators propose to test is that consistent morning use of the Litebook Edge™ bright light therapy device, coupled with two-hour pre-bedtime use of blue-wave light blocking glasses while watching video screens will shift the circadian phase of the sleep-wake cycle of normal adolescents. This in turn will enable them to fall asleep earlier and to receive an increased amount of sleep during the school week. Consequently, they will awaken more readily, feel more awake during early classes, and will perform better on tests of academic performance, attention and working memory. Light therapy will enhance functional connectivity of prefrontal regions involved in attention. Degree of improvement in cognition, attention and functional and structural MRI measures will be directly related to average time spent each day activating (and presumably using) the device, which will be the independent variable in the statistical analyses.

This is a one-arm study, and all participants will receive active treatment. The device was designed to monitor degree of use and the primary statistical question is whether there is a significant association between degree of use and improvement in measures of wakefulness, alertness, and cognitive performance.

This approach of using duration of device activation as the independent variable, in a small preliminary study, provides several advantages over a two-arm studying comparing bright white light to either placebo red light or another type of mechanical device. First, effect size measures previously calculated assumed that subjects in both groups would use the device. There will likely be significant variability between subjects in degree of use and if only a fraction of subjects assigned the bright light device used it consistently then the overall impact would be weaker and possibly missed in a two-group analysis. Using duration of device operation will enable the investigators to compare subjects who used it to a considerable degree versus subjects who hardly use it at all and would likely provide a good estimate of how much benefit accrues from different degrees of use.

This is particularly important for the neuroimaging component. If the investigators compared active versus placebo devices, then only half of the neuroimaged subjects would receive the active device, which may leave the investigators comparing pre versus post effects in only 8-10 subjects. In this revised design all the neuroimaged sample (n = 16-20) would receive the active treatment making the pre-post comparisons stronger, especially when adjusted for duration of device activation.

Second, using duration of device activation as the independent variable will markedly facilitate recruitment. If the investigators used a placebo device, they would need to indicate in the informed consent that subjects may receive a placebo device, without revealing what the placebo is. Instead, the investigators can now indicate in the informed consent that all subjects will receive a device that they believe is biologically active and that no placebos will be used.

This also makes the protocol simpler as raters do not need to be kept blind to device type. All the investigators need to do is make sure that raters remain unaware of duration of device activation.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Sleepiness, Daytime

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

Single arm, with independent variable being percent device use.
Primary Study Purpose

TREATMENT

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Bright Light Arm

This is a one-arm study. Subjects will be provided with the LiteBook Edge™ (LiteBook Company LTD), which is a patented smart phone sized BLT device that provides 10,000 lux illumination at a recommended distance of 61 cm from an LED panel with peak spectral radiance in the blue color spectrum that closely corresponds to the peak spectral frequency (480 nm) of melanopsin photoreceptors that project to the suprachiasmatic nucleus and entrain the circadian clock (Hatori \& Panda, 2010).

Group Type EXPERIMENTAL

LED bright light treatment device

Intervention Type DEVICE

Subjects will be instructed to use the bright light treatment device, as early as possible, for 30 minutes each morning. These devices will be equipped with monitoring electronics that will enable us to download their daily degree of use. Participants will also be provided with yellow-tinted blue light blocking glasses and will be instructed to wear them starting 2 hours before bedtime if they are viewing LED or liquid-crystal display screens.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

LED bright light treatment device

Subjects will be instructed to use the bright light treatment device, as early as possible, for 30 minutes each morning. These devices will be equipped with monitoring electronics that will enable us to download their daily degree of use. Participants will also be provided with yellow-tinted blue light blocking glasses and will be instructed to wear them starting 2 hours before bedtime if they are viewing LED or liquid-crystal display screens.

Intervention Type DEVICE

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

LiteBook Edge™

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Enrolled in school, drowsiness/sleepiness during morning classes which interferes to some degree with academic performance but able to wake up and be on time for said classes, willingness to use a device in the morning to enhance alertness, Intelligence Quotient greater than 80

Exclusion Criteria

* Symptoms of psychiatric disorder on screening, current use of medications, home schooled, involved in morning activities, like athletics, that can alter morning alertness
Minimum Eligible Age

13 Years

Maximum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

Yes

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

LiteBook Company Ltd

UNKNOWN

Sponsor Role collaborator

Mclean Hospital

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Martin H Teicher

Research Psychiatrist

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Martin H Teicher, MD,PhD

Role: PRINCIPAL_INVESTIGATOR

Mclean Hospital

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

McLean Hospital

Belmont, Massachusetts, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

References

Explore related publications, articles, or registry entries linked to this study.

Backhaus J, Hoeckesfeld R, Born J, Hohagen F, Junghanns K. Immediate as well as delayed post learning sleep but not wakefulness enhances declarative memory consolidation in children. Neurobiol Learn Mem. 2008 Jan;89(1):76-80. doi: 10.1016/j.nlm.2007.08.010. Epub 2007 Oct 29.

Reference Type BACKGROUND
PMID: 17911036 (View on PubMed)

Banks S, Dinges DF. Behavioral and physiological consequences of sleep restriction. J Clin Sleep Med. 2007 Aug 15;3(5):519-28.

Reference Type BACKGROUND
PMID: 17803017 (View on PubMed)

Born J, Rasch B, Gais S. Sleep to remember. Neuroscientist. 2006 Oct;12(5):410-24. doi: 10.1177/1073858406292647.

Reference Type BACKGROUND
PMID: 16957003 (View on PubMed)

Born J, Wagner U. Sleep, hormones, and memory. Obstet Gynecol Clin North Am. 2009 Dec;36(4):809-29, x. doi: 10.1016/j.ogc.2009.10.001.

Reference Type BACKGROUND
PMID: 19944302 (View on PubMed)

Cajochen C. Alerting effects of light. Sleep Med Rev. 2007 Dec;11(6):453-64. doi: 10.1016/j.smrv.2007.07.009. Epub 2007 Nov 1.

Reference Type BACKGROUND
PMID: 17936041 (View on PubMed)

Carskadon MA, Acebo C, Jenni OG. Regulation of adolescent sleep: implications for behavior. Ann N Y Acad Sci. 2004 Jun;1021:276-91. doi: 10.1196/annals.1308.032.

Reference Type BACKGROUND
PMID: 15251897 (View on PubMed)

Carskadon MA, Harvey K, Dement WC. Sleep loss in young adolescents. Sleep. 1981 Sep;4(3):299-312. doi: 10.1093/sleep/4.3.299.

Reference Type BACKGROUND
PMID: 7302461 (View on PubMed)

Carvalho-Mendes RP, Dunster GP, de la Iglesia HO, Menna-Barreto L. Afternoon School Start Times Are Associated with a Lack of Both Social Jetlag and Sleep Deprivation in Adolescents. J Biol Rhythms. 2020 Aug;35(4):377-390. doi: 10.1177/0748730420927603. Epub 2020 Jun 8.

Reference Type BACKGROUND
PMID: 32508224 (View on PubMed)

Crowley SJ, Acebo C, Carskadon MA. Sleep, circadian rhythms, and delayed phase in adolescence. Sleep Med. 2007 Sep;8(6):602-12. doi: 10.1016/j.sleep.2006.12.002. Epub 2007 Mar 26.

Reference Type BACKGROUND
PMID: 17383934 (View on PubMed)

Curcio G, Ferrara M, De Gennaro L. Sleep loss, learning capacity and academic performance. Sleep Med Rev. 2006 Oct;10(5):323-37. doi: 10.1016/j.smrv.2005.11.001. Epub 2006 Mar 24.

Reference Type BACKGROUND
PMID: 16564189 (View on PubMed)

Dewald JF, Meijer AM, Oort FJ, Kerkhof GA, Bogels SM. The influence of sleep quality, sleep duration and sleepiness on school performance in children and adolescents: A meta-analytic review. Sleep Med Rev. 2010 Jun;14(3):179-89. doi: 10.1016/j.smrv.2009.10.004. Epub 2010 Jan 21.

Reference Type BACKGROUND
PMID: 20093054 (View on PubMed)

Diekelmann S, Born J. The memory function of sleep. Nat Rev Neurosci. 2010 Feb;11(2):114-26. doi: 10.1038/nrn2762. Epub 2010 Jan 4.

Reference Type BACKGROUND
PMID: 20046194 (View on PubMed)

Dijk DJ, Beersma DG, Daan S, Lewy AJ. Bright morning light advances the human circadian system without affecting NREM sleep homeostasis. Am J Physiol. 1989 Jan;256(1 Pt 2):R106-11. doi: 10.1152/ajpregu.1989.256.1.R106.

Reference Type BACKGROUND
PMID: 2912203 (View on PubMed)

Durmer JS, Dinges DF. Neurocognitive consequences of sleep deprivation. Semin Neurol. 2005 Mar;25(1):117-29. doi: 10.1055/s-2005-867080.

Reference Type BACKGROUND
PMID: 15798944 (View on PubMed)

Dworak M, Schierl T, Bruns T, Struder HK. Impact of singular excessive computer game and television exposure on sleep patterns and memory performance of school-aged children. Pediatrics. 2007 Nov;120(5):978-85. doi: 10.1542/peds.2007-0476.

Reference Type BACKGROUND
PMID: 17974734 (View on PubMed)

Fisher PM, Madsen MK, Mc Mahon B, Holst KK, Andersen SB, Laursen HR, Hasholt LF, Siebner HR, Knudsen GM. Three-week bright-light intervention has dose-related effects on threat-related corticolimbic reactivity and functional coupling. Biol Psychiatry. 2014 Aug 15;76(4):332-9. doi: 10.1016/j.biopsych.2013.11.031. Epub 2013 Dec 19.

Reference Type BACKGROUND
PMID: 24439303 (View on PubMed)

Gais S, Hullemann P, Hallschmid M, Born J. Sleep-dependent surges in growth hormone do not contribute to sleep-dependent memory consolidation. Psychoneuroendocrinology. 2006 Jul;31(6):786-91. doi: 10.1016/j.psyneuen.2006.02.009. Epub 2006 Apr 18.

Reference Type BACKGROUND
PMID: 16621327 (View on PubMed)

Gibson ES, Powles AC, Thabane L, O'Brien S, Molnar DS, Trajanovic N, Ogilvie R, Shapiro C, Yan M, Chilcott-Tanser L. "Sleepiness" is serious in adolescence: two surveys of 3235 Canadian students. BMC Public Health. 2006 May 2;6:116. doi: 10.1186/1471-2458-6-116.

Reference Type BACKGROUND
PMID: 16670019 (View on PubMed)

Goel N, Rao H, Durmer JS, Dinges DF. Neurocognitive consequences of sleep deprivation. Semin Neurol. 2009 Sep;29(4):320-39. doi: 10.1055/s-0029-1237117. Epub 2009 Sep 9.

Reference Type BACKGROUND
PMID: 19742409 (View on PubMed)

Hatori M, Panda S. The emerging roles of melanopsin in behavioral adaptation to light. Trends Mol Med. 2010 Oct;16(10):435-46. doi: 10.1016/j.molmed.2010.07.005. Epub 2010 Aug 31.

Reference Type BACKGROUND
PMID: 20810319 (View on PubMed)

Hysing M, Harvey AG, Linton SJ, Askeland KG, Sivertsen B. Sleep and academic performance in later adolescence: results from a large population-based study. J Sleep Res. 2016 Jun;25(3):318-24. doi: 10.1111/jsr.12373. Epub 2016 Jan 30.

Reference Type BACKGROUND
PMID: 26825591 (View on PubMed)

Kopasz M, Loessl B, Hornyak M, Riemann D, Nissen C, Piosczyk H, Voderholzer U. Sleep and memory in healthy children and adolescents - a critical review. Sleep Med Rev. 2010 Jun;14(3):167-77. doi: 10.1016/j.smrv.2009.10.006. Epub 2010 Jan 25.

Reference Type BACKGROUND
PMID: 20093053 (View on PubMed)

Kramer Fiala Machado A, Wendt A, Baptista Menezes AM, Goncalves H, Wehrmeister FC. Sleep duration trajectories from adolescence to emerging adulthood: Findings from a population-based birth cohort. J Sleep Res. 2021 Jun;30(3):e13155. doi: 10.1111/jsr.13155. Epub 2020 Aug 17.

Reference Type BACKGROUND
PMID: 32808393 (View on PubMed)

Kuula L, Pesonen AK, Merikanto I, Gradisar M, Lahti J, Heinonen K, Kajantie E, Raikkonen K. Development of Late Circadian Preference: Sleep Timing From Childhood to Late Adolescence. J Pediatr. 2018 Mar;194:182-189.e1. doi: 10.1016/j.jpeds.2017.10.068. Epub 2017 Dec 6.

Reference Type BACKGROUND
PMID: 29221693 (View on PubMed)

O'Brien LM. The neurocognitive effects of sleep disruption in children and adolescents. Child Adolesc Psychiatr Clin N Am. 2009 Oct;18(4):813-23. doi: 10.1016/j.chc.2009.04.008.

Reference Type BACKGROUND
PMID: 19836689 (View on PubMed)

Ortega FB, Ruiz JR, Castillo R, Chillon P, Labayen I, Martinez-Gomez D, Redondo C, Marcos A, Moreno LA; AVENA study group. Sleep duration and cognitive performance in adolescence. The AVENA study. Acta Paediatr. 2010 Mar;99(3):454-6. doi: 10.1111/j.1651-2227.2009.01618.x. Epub 2009 Nov 26. No abstract available.

Reference Type BACKGROUND
PMID: 19958297 (View on PubMed)

Pilcher JJ, Walters AS. How sleep deprivation affects psychological variables related to college students' cognitive performance. J Am Coll Health. 1997 Nov;46(3):121-6. doi: 10.1080/07448489709595597.

Reference Type BACKGROUND
PMID: 9394089 (View on PubMed)

Randazzo AC, Muehlbach MJ, Schweitzer PK, Walsh JK. Cognitive function following acute sleep restriction in children ages 10-14. Sleep. 1998 Dec 15;21(8):861-8.

Reference Type BACKGROUND
PMID: 9871948 (View on PubMed)

Roberts RE, Roberts CR, Duong HT. Sleepless in adolescence: prospective data on sleep deprivation, health and functioning. J Adolesc. 2009 Oct;32(5):1045-57. doi: 10.1016/j.adolescence.2009.03.007. Epub 2009 Apr 9.

Reference Type BACKGROUND
PMID: 19361854 (View on PubMed)

Rosenthal NE, Joseph-Vanderpool JR, Levendosky AA, Johnston SH, Allen R, Kelly KA, Souetre E, Schultz PM, Starz KE. Phase-shifting effects of bright morning light as treatment for delayed sleep phase syndrome. Sleep. 1990 Aug;13(4):354-61.

Reference Type BACKGROUND
PMID: 2267478 (View on PubMed)

Sadeh A, Gruber R, Raviv A. Sleep, neurobehavioral functioning, and behavior problems in school-age children. Child Dev. 2002 Mar-Apr;73(2):405-17. doi: 10.1111/1467-8624.00414.

Reference Type BACKGROUND
PMID: 11949899 (View on PubMed)

Sadeh A, Gruber R, Raviv A. The effects of sleep restriction and extension on school-age children: what a difference an hour makes. Child Dev. 2003 Mar-Apr;74(2):444-55. doi: 10.1111/1467-8624.7402008.

Reference Type BACKGROUND
PMID: 12705565 (View on PubMed)

Sadeh A, Raviv A, Gruber R. Sleep patterns and sleep disruptions in school-age children. Dev Psychol. 2000 May;36(3):291-301. doi: 10.1037//0012-1649.36.3.291.

Reference Type BACKGROUND
PMID: 10830974 (View on PubMed)

Suratt PM, Barth JT, Diamond R, D'Andrea L, Nikova M, Perriello VA Jr, Carskadon MA, Rembold C. Reduced time in bed and obstructive sleep-disordered breathing in children are associated with cognitive impairment. Pediatrics. 2007 Feb;119(2):320-9. doi: 10.1542/peds.2006-1969.

Reference Type BACKGROUND
PMID: 17272622 (View on PubMed)

Walker MP. Cognitive consequences of sleep and sleep loss. Sleep Med. 2008 Sep;9 Suppl 1:S29-34. doi: 10.1016/S1389-9457(08)70014-5.

Reference Type BACKGROUND
PMID: 18929316 (View on PubMed)

Wheaton AG, Olsen EO, Miller GF, Croft JB. Sleep Duration and Injury-Related Risk Behaviors Among High School Students--United States, 2007-2013. MMWR Morb Mortal Wkly Rep. 2016 Apr 8;65(13):337-41. doi: 10.15585/mmwr.mm6513a1.

Reference Type BACKGROUND
PMID: 27054407 (View on PubMed)

Teicher MH, Bolger E, Garcia LCH, Hafezi P, Weiser LP, McGreenery CE, Khan A, Ohashi K. Bright light therapy and early morning attention, mathematical performance, electroencephalography and brain connectivity in adolescents with morning sleepiness. PLoS One. 2023 Aug 22;18(8):e0273269. doi: 10.1371/journal.pone.0273269. eCollection 2023.

Reference Type DERIVED
PMID: 37607203 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

2016D003724

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Teen Sleep Health Study
NCT04087603 COMPLETED NA
Light and Sleep Fragmentation
NCT06009289 NOT_YET_RECRUITING PHASE4
Sleep & Pain in Juvenile Arthritis
NCT04133662 COMPLETED NA
Sleep Health Literacy in Head Start
NCT03556462 COMPLETED NA