Validation of Optical Genome Mapping for the Identification of Constitutional Genomic Variants in a Postnatal Cohort

NCT ID: NCT05295277

Last Updated: 2023-08-07

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

UNKNOWN

Total Enrollment

1000 participants

Study Classification

OBSERVATIONAL

Study Start Date

2020-11-30

Study Completion Date

2024-06-30

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The purpose of this research use only (RUO) study is to detect genomic structural variants (SVs) in human DNA by Optical Genome Mapping (OGM) using the Bionano Genomics Saphyr system. SVs are a type of genetic alternation that includes deletions, duplications, and both balanced and unbalanced rearrangements (ex: inversions or translocations), as well as specific repeat expansions and contractions. The results of OGM analysis will be compared to prior clinical genetic test results to determine how OGM compares to current standard of care (SOC) clinical test methods such as chromosomal microarray analysis (CMA), karyotyping, Southern blot analysis, polymerase chain reaction (PCR), fluorescence in situ hybridization (FISH), and/or next generation sequencing (NGS), etc.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Optical genome mapping (OGM) is an emerging next-generation cytogenomic tool that enables a comprehensive analysis of structural variants (SVs) in the genome. OGM, in its current iteration, is performed on the Saphyr system, which is developed and marketed by Bionano Genomics (San Diego, CA). OGM employs imaging of ultra-long DNA molecules (\>150 kbp) that are labeled at a unique 6 base-pair sequence motif (CTTAAG) that occurs throughout the genome. The images of the labeled DNA molecules are used to generate a de novo assembly that can be compared to a reference genome to identify all classes of SVs, such as deletions, duplications, balanced/ unbalanced genomic rearrangements (insertions, inversions, and translocations), and repeat array expansions/contractions). In addition, a separate coverage-based algorithm enables the detection of genome-wide copy number analysis (similar to CMA), and the absence of heterozygosity (AOH) analysis. In the same assay, a concurrent or stepwise data analysis pipeline allows for sizing pathogenic CGG repeat expansions (consistent with fragile X syndrome) as well as D4Z4 repeat contractions which are consistent with facioscapulohumeral muscular dystrophy type 1 (FSHD1). Recently, in several studies, OGM has demonstrated excellent concordance with standard-of-care testing. Importantly, the OGM workflow can provide results within three-five days.

The aim of this double-blinded, multi-site, retrospective, observational, Institutional Review Board (IRB)-approved study is to evaluate the concordance of structural variant detection by OGM compared to standard of care tests (such as CMA, karyotyping, Southern blot analysis, PCR, FISH, and/or NGS, etc.), in a large cohort containing a variety of SVs including aneuploidies, intragenic and contiguous deletions, duplications, balanced and unbalanced translocations, inversions, isochromosomes, ring chromosomes, repeat expansions, repeat contractions, and more. This study is also designed to assess the sensitivity, specificity, and reproducibility of OGM analysis conducted at multiple sites, by numerous operators, and on different Saphyr instruments. Consensus testing and interpretation protocols were developed and implemented at all sites.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Developmental Disability Intellectual Disability Autism Spectrum Disorder Congenital Anomaly Fragile X Syndrome Facioscapulohumeral Muscular Dystrophy 1

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

RETROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Standard of care genetic testing group

Individuals with genomic test results from a standard of care (SOC) test (such as CMA, karyotyping, Southern blot analysis, PCR, FISH, and/or NGS, etc.) will be enrolled in the study to compare the SOC result to results from optical genome mapping.

Standard of care genetic testing group

Intervention Type OTHER

N/A - no intervention as this is an observational study.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Standard of care genetic testing group

N/A - no intervention as this is an observational study.

Intervention Type OTHER

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

1. Individual with a genomic aberration identified by CMA, karyotyping, Southern blot analysis, PCR, FISH, and/or NGS or other standard of care (SOC) genetic testing technology whose clinical test results are available to compare with results from OGM.
2. Patients with prior negative SOC genetic testing results whose results are available to compare with results from OGM.

Exclusion Criteria

1. Any individual who opted-out of research at the testing laboratory.
2. An individual whose genetic test contains the following variants: pathogenic sequence variants, abnormalities involving acrocentric p-arms and centromeres, below 20% for mosaicism, and tetraploidy.
Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

University of Rochester

OTHER

Sponsor Role collaborator

Columbia University

OTHER

Sponsor Role collaborator

Greenwood Genetic Center

OTHER

Sponsor Role collaborator

Praxis Genomics

UNKNOWN

Sponsor Role collaborator

Augusta University

OTHER

Sponsor Role collaborator

Medical College of Wisconsin

OTHER

Sponsor Role collaborator

University of Iowa

OTHER

Sponsor Role collaborator

Bionano Genomics

INDUSTRY

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Alka Chaubey, PhD, FACMG

Role: PRINCIPAL_INVESTIGATOR

Bionano Genomics

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Praxis Genomics

Atlanta, Georgia, United States

Site Status ACTIVE_NOT_RECRUITING

Augusta University Research Institute

Augusta, Georgia, United States

Site Status ACTIVE_NOT_RECRUITING

University of Iowa Hospitals & Clinics, Molecular Pathology

Iowa City, Iowa, United States

Site Status ACTIVE_NOT_RECRUITING

Columbia University Irving Medical Center

New York, New York, United States

Site Status ACTIVE_NOT_RECRUITING

DNA Microarray CGH Laboratory, Department of Pathology, University of Rochester Medical Center

West Henrietta, New York, United States

Site Status ACTIVE_NOT_RECRUITING

Greenwood Genetic Center

Greenwood, South Carolina, United States

Site Status RECRUITING

Lineagen (A Bionano Genomics Company)

Salt Lake City, Utah, United States

Site Status RECRUITING

Medical College of Wisconsin

Milwaukee, Wisconsin, United States

Site Status ACTIVE_NOT_RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

United States

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Alex Hastie, PhD

Role: CONTACT

267-315-0914

Megan Martin, MS

Role: CONTACT

801-931-6203

References

Explore related publications, articles, or registry entries linked to this study.

Shieh JT, Penon-Portmann M, Wong KHY, Levy-Sakin M, Verghese M, Slavotinek A, Gallagher RC, Mendelsohn BA, Tenney J, Beleford D, Perry H, Chow SK, Sharo AG, Brenner SE, Qi Z, Yu J, Klein OD, Martin D, Kwok PY, Boffelli D. Application of full-genome analysis to diagnose rare monogenic disorders. NPJ Genom Med. 2021 Sep 23;6(1):77. doi: 10.1038/s41525-021-00241-5.

Reference Type BACKGROUND
PMID: 34556655 (View on PubMed)

Stence AA, Thomason JG, Pruessner JA, Sompallae RR, Snow AN, Ma D, Moore SA, Bossler AD. Validation of Optical Genome Mapping for the Molecular Diagnosis of Facioscapulohumeral Muscular Dystrophy. J Mol Diagn. 2021 Nov;23(11):1506-1514. doi: 10.1016/j.jmoldx.2021.07.021. Epub 2021 Aug 9.

Reference Type BACKGROUND
PMID: 34384893 (View on PubMed)

Mantere T, Neveling K, Pebrel-Richard C, Benoist M, van der Zande G, Kater-Baats E, Baatout I, van Beek R, Yammine T, Oorsprong M, Hsoumi F, Olde-Weghuis D, Majdali W, Vermeulen S, Pauper M, Lebbar A, Stevens-Kroef M, Sanlaville D, Dupont JM, Smeets D, Hoischen A, Schluth-Bolard C, El Khattabi L. Optical genome mapping enables constitutional chromosomal aberration detection. Am J Hum Genet. 2021 Aug 5;108(8):1409-1422. doi: 10.1016/j.ajhg.2021.05.012. Epub 2021 Jul 7.

Reference Type BACKGROUND
PMID: 34237280 (View on PubMed)

Chaisson MJP, Sanders AD, Zhao X, Malhotra A, Porubsky D, Rausch T, Gardner EJ, Rodriguez OL, Guo L, Collins RL, Fan X, Wen J, Handsaker RE, Fairley S, Kronenberg ZN, Kong X, Hormozdiari F, Lee D, Wenger AM, Hastie AR, Antaki D, Anantharaman T, Audano PA, Brand H, Cantsilieris S, Cao H, Cerveira E, Chen C, Chen X, Chin CS, Chong Z, Chuang NT, Lambert CC, Church DM, Clarke L, Farrell A, Flores J, Galeev T, Gorkin DU, Gujral M, Guryev V, Heaton WH, Korlach J, Kumar S, Kwon JY, Lam ET, Lee JE, Lee J, Lee WP, Lee SP, Li S, Marks P, Viaud-Martinez K, Meiers S, Munson KM, Navarro FCP, Nelson BJ, Nodzak C, Noor A, Kyriazopoulou-Panagiotopoulou S, Pang AWC, Qiu Y, Rosanio G, Ryan M, Stutz A, Spierings DCJ, Ward A, Welch AE, Xiao M, Xu W, Zhang C, Zhu Q, Zheng-Bradley X, Lowy E, Yakneen S, McCarroll S, Jun G, Ding L, Koh CL, Ren B, Flicek P, Chen K, Gerstein MB, Kwok PY, Lansdorp PM, Marth GT, Sebat J, Shi X, Bashir A, Ye K, Devine SE, Talkowski ME, Mills RE, Marschall T, Korbel JO, Eichler EE, Lee C. Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat Commun. 2019 Apr 16;10(1):1784. doi: 10.1038/s41467-018-08148-z.

Reference Type BACKGROUND
PMID: 30992455 (View on PubMed)

Chan S, Lam E, Saghbini M, Bocklandt S, Hastie A, Cao H, Holmlin E, Borodkin M. Structural Variation Detection and Analysis Using Bionano Optical Mapping. Methods Mol Biol. 2018;1833:193-203. doi: 10.1007/978-1-4939-8666-8_16.

Reference Type BACKGROUND
PMID: 30039375 (View on PubMed)

Barseghyan H, Tang W, Wang RT, Almalvez M, Segura E, Bramble MS, Lipson A, Douine ED, Lee H, Delot EC, Nelson SF, Vilain E. Next-generation mapping: a novel approach for detection of pathogenic structural variants with a potential utility in clinical diagnosis. Genome Med. 2017 Oct 25;9(1):90. doi: 10.1186/s13073-017-0479-0.

Reference Type BACKGROUND
PMID: 29070057 (View on PubMed)

Lam ET, Hastie A, Lin C, Ehrlich D, Das SK, Austin MD, Deshpande P, Cao H, Nagarajan N, Xiao M, Kwok PY. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat Biotechnol. 2012 Aug;30(8):771-6. doi: 10.1038/nbt.2303.

Reference Type BACKGROUND
PMID: 22797562 (View on PubMed)

Iqbal MA, Broeckel U, Levy B, Sinner S, Sahajpal N, Rodriguez V, Stence A, Awayda K, Scharer G, Skinner C, Stevenson R, Bossler A, Nagy PL, Kohle R. Multi-site technical performance and concordance of optical genome mapping: constitutional postnatal study for SV, CNV, and repeat array analysis. MedRxiv (pre-print). 2021 Dec 30; doi: https://doi.org/10.1101/2021.12.27.21268432

Reference Type RESULT

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

20203726

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Reverse Phenotyping Core
NCT03632239 ENROLLING_BY_INVITATION