Developing Biomarkers of Plexiform Tumor Burden in Patients With Neurofibromatosis-Type 1
NCT ID: NCT05238909
Last Updated: 2025-09-02
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
ENROLLING_BY_INVITATION
200 participants
OBSERVATIONAL
2022-03-04
2027-06-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
This study is an effort to create biomarker profiles of patients with NF1 with known tumors. The study team will utilize whole-body MRI and mass spectrometry (a method for identifying unknown compounds and the properties of molecules). The ultimate goal of this study is to better understand the tumor biomarkers in patients with NF1.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Development and Validation of Patient Reported Outcome (PRO) Measures for Individuals With Neurofibromatosis 1 (NF1) and Plexiform Neurofibromas (pNFs)
NCT02544022
Transformation of Plexiform Neurofibromas to Malignant Peripheral Nerve Sheath Tumors in Neurofibromatosis Type 1
NCT02211768
Study of Plexiform Neurofibromas in Neurofibromatosis Type 1
NCT00006435
Development of Patient-Reported Outcome Measures Assessing Tumor Visibility and Appearance Concerns in Neurofibromatosis Type 1: A Qualitative Study
NCT06880991
Multi-parametric Biomarker Development to Predict Malignant Conversion in Patients With Neurofibromatosis Type 1
NCT05677594
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Taking advantage of our large, well-characterized, Lurie Children's NF1 population, the investigator propose to perform analytical validation studies of candidate GC/LC biomarker signature of tumor burden in plasma from NF1 patients with defined numbers of PNF (tumor burden) by whole body MRI. The potential outcomes of our study are identification of candidate biomarker of tumor burden that contribute to patient risk stratification, and analytical validation of GC/LC biomarker signature (context of use). Collectively, this work represents a synergistic approach for discovery and validation of biomarkers of tumor burden in NF1.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
2. Mosaic NF1 individuals
3. Pregnant at Screening
4. Patients who do not have the ability/capacity to undergo the informed consent process OR whose parent/legal guardian is unable to undergo the informed consent process.
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
National Institute of Neurological Disorders and Stroke (NINDS)
NIH
Children's Hospital Medical Center, Cincinnati
OTHER
Ann & Robert H Lurie Children's Hospital of Chicago
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Carlos Prada, MD
Principal Investigator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Carlos Prada, MD
Role: PRINCIPAL_INVESTIGATOR
Ann & Robert H Lurie Children's Hospital of Chicago
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Ann & Robert H. Lurie Children's Hospital of Chicago
Chicago, Illinois, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Le LQ, Parada LF. Tumor microenvironment and neurofibromatosis type I: connecting the GAPs. Oncogene. 2007 Jul 12;26(32):4609-16. doi: 10.1038/sj.onc.1210261. Epub 2007 Feb 12.
McCormick F. Ras signaling and NF1. Curr Opin Genet Dev. 1995 Feb;5(1):51-5. doi: 10.1016/s0959-437x(95)90053-5.
Birnbaum RA, O'Marcaigh A, Wardak Z, Zhang YY, Dranoff G, Jacks T, Clapp DW, Shannon KM. Nf1 and Gmcsf interact in myeloid leukemogenesis. Mol Cell. 2000 Jan;5(1):189-95. doi: 10.1016/s1097-2765(00)80415-3.
Bollag G, Clapp DW, Shih S, Adler F, Zhang YY, Thompson P, Lange BJ, Freedman MH, McCormick F, Jacks T, Shannon K. Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet. 1996 Feb;12(2):144-8. doi: 10.1038/ng0296-144.
Largaespada DA, Brannan CI, Jenkins NA, Copeland NG. Nf1 deficiency causes Ras-mediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia. Nat Genet. 1996 Feb;12(2):137-43. doi: 10.1038/ng0296-137.
Ratner N, Miller SJ. A RASopathy gene commonly mutated in cancer: the neurofibromatosis type 1 tumour suppressor. Nat Rev Cancer. 2015 May;15(5):290-301. doi: 10.1038/nrc3911. Epub 2015 Apr 16.
Prada CE, Rangwala FA, Martin LJ, Lovell AM, Saal HM, Schorry EK, Hopkin RJ. Pediatric plexiform neurofibromas: impact on morbidity and mortality in neurofibromatosis type 1. J Pediatr. 2012 Mar;160(3):461-7. doi: 10.1016/j.jpeds.2011.08.051. Epub 2011 Oct 11.
Wu J, Williams JP, Rizvi TA, Kordich JJ, Witte D, Meijer D, Stemmer-Rachamimov AO, Cancelas JA, Ratner N. Plexiform and dermal neurofibromas and pigmentation are caused by Nf1 loss in desert hedgehog-expressing cells. Cancer Cell. 2008 Feb;13(2):105-16. doi: 10.1016/j.ccr.2007.12.027.
Jessen WJ, Miller SJ, Jousma E, Wu J, Rizvi TA, Brundage ME, Eaves D, Widemann B, Kim MO, Dombi E, Sabo J, Hardiman Dudley A, Niwa-Kawakita M, Page GP, Giovannini M, Aronow BJ, Cripe TP, Ratner N. MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J Clin Invest. 2013 Jan;123(1):340-7. doi: 10.1172/JCI60578. Epub 2012 Dec 10.
Jousma E, Rizvi TA, Wu J, Janhofer D, Dombi E, Dunn RS, Kim MO, Masters AR, Jones DR, Cripe TP, Ratner N. Preclinical assessments of the MEK inhibitor PD-0325901 in a mouse model of Neurofibromatosis type 1. Pediatr Blood Cancer. 2015 Oct;62(10):1709-16. doi: 10.1002/pbc.25546. Epub 2015 Apr 22.
Dombi E, Baldwin A, Marcus LJ, Fisher MJ, Weiss B, Kim A, Whitcomb P, Martin S, Aschbacher-Smith LE, Rizvi TA, Wu J, Ershler R, Wolters P, Therrien J, Glod J, Belasco JB, Schorry E, Brofferio A, Starosta AJ, Gillespie A, Doyle AL, Ratner N, Widemann BC. Activity of Selumetinib in Neurofibromatosis Type 1-Related Plexiform Neurofibromas. N Engl J Med. 2016 Dec 29;375(26):2550-2560. doi: 10.1056/NEJMoa1605943.
Dombi E, Solomon J, Gillespie AJ, Fox E, Balis FM, Patronas N, Korf BR, Babovic-Vuksanovic D, Packer RJ, Belasco J, Goldman S, Jakacki R, Kieran M, Steinberg SM, Widemann BC. NF1 plexiform neurofibroma growth rate by volumetric MRI: relationship to age and body weight. Neurology. 2007 Feb 27;68(9):643-7. doi: 10.1212/01.wnl.0000250332.89420.e6. Epub 2007 Jan 10.
Gross AM, Wolters PL, Dombi E, Baldwin A, Whitcomb P, Fisher MJ, Weiss B, Kim A, Bornhorst M, Shah AC, Martin S, Roderick MC, Pichard DC, Carbonell A, Paul SM, Therrien J, Kapustina O, Heisey K, Clapp DW, Zhang C, Peer CJ, Figg WD, Smith M, Glod J, Blakeley JO, Steinberg SM, Venzon DJ, Doyle LA, Widemann BC. Selumetinib in Children with Inoperable Plexiform Neurofibromas. N Engl J Med. 2020 Apr 9;382(15):1430-1442. doi: 10.1056/NEJMoa1912735. Epub 2020 Mar 18.
Fletcher JS, Pundavela J, Ratner N. After Nf1 loss in Schwann cells, inflammation drives neurofibroma formation. Neurooncol Adv. 2019 Nov 22;2(Suppl 1):i23-i32. doi: 10.1093/noajnl/vdz045. eCollection 2020 Jul.
Fletcher JS, Springer MG, Choi K, Jousma E, Rizvi TA, Dombi E, Kim MO, Wu J, Ratner N. STAT3 inhibition reduces macrophage number and tumor growth in neurofibroma. Oncogene. 2019 Apr;38(15):2876-2884. doi: 10.1038/s41388-018-0600-x. Epub 2018 Dec 12.
Prada CE, Jousma E, Rizvi TA, Wu J, Dunn RS, Mayes DA, Cancelas JA, Dombi E, Kim MO, West BL, Bollag G, Ratner N. Neurofibroma-associated macrophages play roles in tumor growth and response to pharmacological inhibition. Acta Neuropathol. 2013 Jan;125(1):159-68. doi: 10.1007/s00401-012-1056-7. Epub 2012 Oct 26.
Fletcher JS, Wu J, Jessen WJ, Pundavela J, Miller JA, Dombi E, Kim MO, Rizvi TA, Chetal K, Salomonis N, Ratner N. Cxcr3-expressing leukocytes are necessary for neurofibroma formation in mice. JCI Insight. 2019 Feb 7;4(3):e98601. doi: 10.1172/jci.insight.98601.
Wu J, Dombi E, Jousma E, Scott Dunn R, Lindquist D, Schnell BM, Kim MO, Kim A, Widemann BC, Cripe TP, Ratner N. Preclincial testing of sorafenib and RAD001 in the Nf(flox/flox) ;DhhCre mouse model of plexiform neurofibroma using magnetic resonance imaging. Pediatr Blood Cancer. 2012 Feb;58(2):173-80. doi: 10.1002/pbc.23015. Epub 2011 Feb 11.
Bujak R, Struck-Lewicka W, Markuszewski MJ, Kaliszan R. Metabolomics for laboratory diagnostics. J Pharm Biomed Anal. 2015 Sep 10;113:108-20. doi: 10.1016/j.jpba.2014.12.017. Epub 2014 Dec 25.
Grissa D, Petera M, Brandolini M, Napoli A, Comte B, Pujos-Guillot E. Feature Selection Methods for Early Predictive Biomarker Discovery Using Untargeted Metabolomic Data. Front Mol Biosci. 2016 Jul 8;3:30. doi: 10.3389/fmolb.2016.00030. eCollection 2016.
Watanabe M, Roth TL, Bauer SJ, Lane A, Romick-Rosendale LE. Feasibility Study of NMR Based Serum Metabolomic Profiling to Animal Health Monitoring: A Case Study on Iron Storage Disease in Captive Sumatran Rhinoceros (Dicerorhinus sumatrensis). PLoS One. 2016 May 27;11(5):e0156318. doi: 10.1371/journal.pone.0156318. eCollection 2016.
Setchell KD, Nardi E, Battezzati PM, Asciutti S, Castellani D, Perriello G, Clerici C. Novel soy germ pasta enriched in isoflavones ameliorates gastroparesis in type 2 diabetes: a pilot study. Diabetes Care. 2013 Nov;36(11):3495-7. doi: 10.2337/dc12-1615. Epub 2013 Jul 8.
Weiss B, Plotkin S, Widemann B, Tonsgard J, Blakeley J, Allen J, Schorry E, Korf B, Rosser T, Goldman S, Vinks A, Cutter G, Dombi E, Ratner N, Packer R, Fisher M. NFM-06. NF106: PHASE 2 TRIAL OF THE MEK INHIBITOR PD-0325901 IN ADOLESCENTS AND ADULTS WITH NF1-RELATED PLEXIFORM NEUROFIBROMAS: AN NF CLINICAL TRIALS CONSORTIUM STUDY. Neuro Oncol. 2018 Jun;20(Suppl 2):i143. doi: 10.1093/neuonc/noy059.514. Epub 2018 Jun 22. PMCID: PMC6012484.
Johnson CH, Ivanisevic J, Benton HP, Siuzdak G. Bioinformatics: the next frontier of metabolomics. Anal Chem. 2015 Jan 6;87(1):147-56. doi: 10.1021/ac5040693. Epub 2014 Nov 20. No abstract available.
Redrup MJ, Igarashi H, Schaefgen J, Lin J, Geisler L, Ben M'Barek M, Ramachandran S, Cardoso T, Hillewaert V. Sample Management: Recommendation for Best Practices and Harmonization from the Global Bioanalysis Consortium Harmonization Team. AAPS J. 2016 Mar;18(2):290-3. doi: 10.1208/s12248-016-9869-2. Epub 2016 Jan 28.
van de Merbel N, Savoie N, Yadav M, Ohtsu Y, White J, Riccio MF, Dong K, de Vries R, Diancin J. Stability: recommendation for best practices and harmonization from the Global Bioanalysis Consortium Harmonization Team. AAPS J. 2014 May;16(3):392-9. doi: 10.1208/s12248-014-9573-z. Epub 2014 Feb 19.
Sankoh AJ, Huque MF, Dubey SD. Some comments on frequently used multiple endpoint adjustment methods in clinical trials. Stat Med. 1997 Nov 30;16(22):2529-42. doi: 10.1002/(sici)1097-0258(19971130)16:223.0.co;2-j.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.