3D Free-Breathing Multi-echo Acquisition for Whole-body Water/Fat Separation
NCT ID: NCT05100927
Last Updated: 2022-06-01
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
WITHDRAWN
OBSERVATIONAL
2022-01-22
2024-01-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
The investigators of this study are developing an MRI imaging technique that will help with treatment planning for cancer patients. Specifically, the method investigating will help to calculate how the dose the patient needs to treat his/her/their cancer is distributed. This information is required for prescribing the dose to the patient for their cancer treatment.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Whole Body Magnetic Resonance Imaging (MRI) for Detection of Cancer Metastases
NCT00592462
MRI (Including Spectroscopy and Fat-Saturations and Diffusion-Weighted Imaging) in Cervical Cancer
NCT01060033
Improving Clinical PET/CT Image Quality in Retrospectively Reconstructed Breath-Hold Images
NCT01109953
Quantitative Diffusion and Fat Imaging of the Spine
NCT00498277
Functional Imaging of Tumor and Normal Tissue
NCT00933114
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
The MRIdian MR-Linac is a low-field system (0.35 Tesla), which is beneficial for applications in RT because it has less effect on the radiation beam than higher field systems. However, low-field MR systems have imaging challenges compared to high-field MR systems. The resonant frequencies between water and fat at 0.35 Tesla are close and traditional methods of separating these tissues (i.e., DIXON-based methods) are more difficult. Furthermore, spectral-selection of fat is not possible, which means traditional fat saturation methods cannot be used at 0.35T. Currently, neither a fat-saturation sequence nor a multi-echo sequence for fat/water separation is available on the MRIdian MR-Linac system. We propose to implement and test a fat/water separation technique optimized for 0.35T. This sequence will enable sCT generation for MR-only simulation (i.e., RT planning without CT) and adaptive RT.
The original DIXON technique for water/fat separation depends on two signal acquisitions - when the fat and water spins are in-phase and opposed-phase. New DIXON methods are more flexible and enable fat/water separation at echo times that are not directly in- and opposed-phase. At 0.35T, the fat and water spins are slow enough that the first echo (i.e., shortest echo) is a near-in-phase echo. Additional echoes will support a 3-point DIXON reconstruction and B0 mapping for inhomogeneity correction.
The long-term goal of this study is to realize the benefits of MR-guided adaptive RT to decrease toxicity and improve patient outcomes. The specific objective of this study is to develop an MR sequence on the low-field MR-Linac for fat/water separation. For the purposes of Radiation Oncology, multi-echo gradient-echo is a fast method to acquire a 3D stack with a large FOV. The images can be reconstructed using a DIXON-based method to produce multiple image types. The resulting images can be used for sCT, which could greatly assist with auto-contouring methods and adaptive planning on MR-Linac systems. These images are also diagnostically used for functional imaging, specifically Dynamic contrast-enhanced imaging (DCE-MRI), which has shown promise at low field, as well as a non-contrast method magnetic resonance angiography (MRA).
Producing these images requires chemical shift imaging. At low fields, chemical shift imaging is difficult as the spectra of fat and water are very close (52 Hz @ 0.35T as compared to 224 Hz @ 1.5T). Traditional DIXON methods use out-of-phase and in-phase echo times (TEs) to separate fat and water. At 0.35T, these TEs are 9.86ms and 19.7ms, respectively. However, long TEs degrade the signal-to-noise ratio (SNR) and lead to long imaging times, particularly for 3D stacks. In addition, B0 inhomogeneity increases and SNR degrades with longer TEs.
The hypothesis is that at 0.35T, the fat and water spins are slow enough that the first echo (i.e., shortest echo, approximately 1ms) is a near-in-phase echo. Additional echoes will support a 3-point DIXON reconstruction and B0 mapping for inhomogeneity correction. I predict that once this multi-echo gradient echo sequence is implemented on the MRIdian system, it can be used to acquire images that will successfully produce water-only, fat-only, in-phase and opposed-phase images.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
An MR pulse sequence developing on the MRIdian system
This a pilot study to assess and optimize an MR pulse sequence that we are developing on the MRIdian system. It is a single-center trial recruiting only normal volunteers. Volunteers may be grouped by anatomic region of assessment.
No interventions assigned to this group
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
1. Aneurysm clip
2. Implanted neural stimulator
3. Implanted cardiac pacemaker or auto-defibrillator
4. Cochlear implant
5. Ocular foreign body (e.g., metal shavings)
6. Any implanted device (pumps, infusion devices, etc)
7. Shrapnel injuries 2. Subjects will be excluded if it is deemed that he/she/they has/have a condition which would preclude use for technical development (e.g. morbid obesity, claustrophobia, etc.) or present unnecessary risks (e.g. pregnancy, surgery of uncertain type, implant etc.).
18 Years
100 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Milton S. Hershey Medical Center
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Melanie Traughber, DSc
Role: PRINCIPAL_INVESTIGATOR
Penn State Cancer Institute
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
21-129
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.