Multimodal Imaging-assisted Diagnosis Model for Cervical Spine Tumors

NCT ID: NCT04959656

Last Updated: 2021-07-13

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

600 participants

Study Classification

OBSERVATIONAL

Study Start Date

2020-01-01

Study Completion Date

2021-06-01

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Cervical spine tumor is a small sample of tumor disease with low incidence, great harm, and complex anatomical structure. It is very difficult to identify and classify benign and malignant cervical spine tumors clinically.

The deep learning model we constructed in the early stage has a higher accuracy rate for the image diagnosis of cervical spondylosis with a large number of cases, and a better clinical application effect, but the accuracy rate for cervical spine tumors with a small number of cases is lower. The reason may be the amount of data. With limited tasks, the traditional deep learning model is difficult to play an effective role.

Based on this, we propose to build a small sample-oriented deep learning model to assist clinicians in the diagnosis of cervical spine tumors with multimodal images, and to evaluate the benign and malignant tumors.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Cervical spine tumor is a small-sample tumor disease with low incidence, great harm, and complex anatomical structure. It is very difficult to identify and classify benign and malignant cervical spine tumors clinically. The deep learning model we constructed in the early stage is suitable for the large number of cases. The imaging diagnosis of cervical spondylosis has a high accuracy rate and a good clinical application effect, but the accuracy rate is low for cervical spine tumors with a small number of cases. The reason may be that for tasks with limited amount of data, the traditional deep learning model is difficult to play an effective role. Based on this, we propose to construct a small sample-oriented deep learning model to assist clinicians in the diagnosis of cervical spine tumors in multi-modal imaging, and to evaluate the benign and malignant tumors. This research will not only improve the efficiency and efficiency of cervical spine tumor imaging diagnosis. Accuracy, to guide clinical personalized treatment, will also provide a basis for the clinical application of deep learning in the field of small samples, which has important clinical significance.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Spine Tumor

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

CASE_ONLY

Study Time Perspective

RETROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

X-ray

This study completed the manual labeling of preoperative multi-modal images of cervical spine structures and tumor lesions. On the normal cervical spine, six target areas were labeled: cervical spinal cord (MRI), cervical spine alignment (MRI), cervical intervertebral discs ( MRI), cervical spinal canal area (MRI), cervical cobb angle (X-ray) and cervical posterior longitudinal ligament ossification (CT). For cervical tumor lesions, complete MR and CT as well as orthopedic, axial and coronal positions. The label on the lateral X-ray image.

No interventions assigned to this group

CT

This study completed the manual labeling of preoperative multi-modal images of cervical spine structures and tumor lesions. On the normal cervical spine, six target areas were labeled: cervical spinal cord (MRI), cervical spine alignment (MRI), cervical intervertebral discs ( MRI), cervical spinal canal area (MRI), cervical cobb angle (X-ray) and cervical posterior longitudinal ligament ossification (CT). For cervical tumor lesions, complete MR and CT as well as orthopedic, axial and coronal positions. The label on the lateral X-ray image.

No interventions assigned to this group

MRI

This study completed the manual labeling of preoperative multi-modal images of cervical spine structures and tumor lesions. On the normal cervical spine, six target areas were labeled: cervical spinal cord (MRI), cervical spine alignment (MRI), cervical intervertebral discs ( MRI), cervical spinal canal area (MRI), cervical cobb angle (X-ray) and cervical posterior longitudinal ligament ossification (CT). For cervical tumor lesions, complete MR and CT as well as orthopedic, axial and coronal positions. The label on the lateral X-ray image.

No interventions assigned to this group

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* 18-50 years old, about 300 males and females; in the orthopedics outpatient and emergency department of our hospital, the imaging scans (X-ray, CT, MR) showed no obvious abnormalities.

Exclusion Criteria

* have had surgery before acquiring the images, Those who have cervical spine fractures, deformities, infections, etc. who cannot cooperate with imaging examinations, and those who have not signed the informed consent. The normal control group" includes about 600 patients with normal or slightly degenerated cervical spine, as a standard for training computers to recognize cervical spine structures Images and control images for detecting tumor lesions.
Minimum Eligible Age

18 Years

Maximum Eligible Age

50 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Peking University Third Hospital

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

hanqiang ouyang

Role: STUDY_CHAIR

Peking University Third Hospital

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Peking University Third Hospital

Beijing, , China

Site Status

Countries

Review the countries where the study has at least one active or historical site.

China

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

IRB00006761-M2020255

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.