Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
1000 participants
OBSERVATIONAL
2022-05-01
2024-12-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Diagnostic Efficiency of Artificial Intelligence for Surgical Neuropathology
NCT04671368
AI-assisted Diagnosis of Malignant Brain Tumors
NCT07198256
Combing a Deep Learning-Based Radiomics With Liquid Biopsy for Preoperative and Non-invasive Diagnosis of Glioma
NCT05536024
Radiomic and Pathomic Study of Pituitary Adenoma Using Machine Learning
NCT05108064
Research of Pathological Imaging Diagnosis of Ocular Tumors Based on New Artificial Intelligence Algorithm
NCT04695015
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Different CNS tumors including meningioma, glioma, lymphoma and other various tumors have their own different treatment principles and plans. For example, high grade glioma requires operational resection and post-operational chemo-radiotherapy. However, operational resection is not significant for improving prognosis in lymphoma patients, systematic chemotherapy will be performed after specific diagnosis based on biopsy. Therefore, in this study, an automated CNS tumor pathological diagnosis system will be developed to classify the different type of those tumors.
At present, pathological diagnosis of CNS tumors is based on histopathological characteristics and molecular information after a systematic analyzed by pathologists. The accuracy of the diagnosis very much relies on the experience of the pathologists. However, to become a experienced and qualified pathologist requires years of training. Pathologists may give completely different diagnose outcome for the same patient. Thus, it is essential to develop a system that can assist pathologists.
Deep learning is one of the most advanced techniques of artificial intelligence. In particular, the ability of image recognition is extremely powerful. Therefore, we are able to develop a model for histopathological section images based on deep learning. WHO Classification of CNS Tumors 2016 has included molecular markers as the important part of diagnosis. Hence, there will be an additional model of molecular pathology to be added to the system.
Huashan Hospital has one of the largest CNS tumor biobank in China, which is the key part for deep learning, as it needs large amount of data. The case load of this study is able to show the representative and authoritative of those data.
There will be three stages of the study. Stage 1 and 2 are supervised learning process. Stage 1 is to develop the best deep learning model for histopathological diagnosis of CNS tumors, we anticipate the accuracy for the first model to achieve at least 70%. The training data (pathological sections) will be provided by Huashan Hospital CNS tumor biobank. In the mean time, a micro-positioning platform is under investigation for the use of image collection. At the end of stage 1, we anticipate to integrate the model (software) and the platform (hardware) as the whole diagnose system for histopathological images. Stage 2 is to design a model for molecular pathological diagnosis for CNS tumors. The model will be trained by numerous amount of related molecular information extracted from those pathological sections. At the end of stage 2, we anticipate to combine stage 1 system and stage 2 model as the primary prototype. Stage 3 is known as the unsupervised learning process. By using the prototype developed after previous stages, the system will be used clinically. With the incoming of more patients and data, together with pathologists in the hospital, it will give its diagnosis. By comparing the results with pathologists, it will be able to self-learn and improve the accuracy as the time goes on. By the end of stage 3, we anticipate to have the system ready for independent clinical pathological diagnosis ability with the accuracy greater than 90%.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
CASE_ONLY
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
CNS Tumor
All patients age from 18-75 years with CNS tumors are included and count as one group
No interventions assigned to this group
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
18 Years
75 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
United Imaging Healthcare
UNKNOWN
Huashan Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Jinsong Wu
Professor
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Jinsong Wu, Ph.D. & M.D
Role: STUDY_CHAIR
Huashan Hospital
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Hushan Hospital, Fudan University
Shanghai, Shanghai Municipality, China
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016 Jun;131(6):803-20. doi: 10.1007/s00401-016-1545-1. Epub 2016 May 9.
Wen PY, Huse JT. 2016 World Health Organization Classification of Central Nervous System Tumors. Continuum (Minneap Minn). 2017 Dec;23(6, Neuro-oncology):1531-1547. doi: 10.1212/CON.0000000000000536.
Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015 Jan;61:85-117. doi: 10.1016/j.neunet.2014.09.003. Epub 2014 Oct 13.
Yu KH, Zhang C, Berry GJ, Altman RB, Re C, Rubin DL, Snyder M. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat Commun. 2016 Aug 16;7:12474. doi: 10.1038/ncomms12474.
Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B, Karssemeijer N, Litjens G, van der Laak JAWM; the CAMELYON16 Consortium; Hermsen M, Manson QF, Balkenhol M, Geessink O, Stathonikos N, van Dijk MC, Bult P, Beca F, Beck AH, Wang D, Khosla A, Gargeya R, Irshad H, Zhong A, Dou Q, Li Q, Chen H, Lin HJ, Heng PA, Hass C, Bruni E, Wong Q, Halici U, Oner MU, Cetin-Atalay R, Berseth M, Khvatkov V, Vylegzhanin A, Kraus O, Shaban M, Rajpoot N, Awan R, Sirinukunwattana K, Qaiser T, Tsang YW, Tellez D, Annuscheit J, Hufnagl P, Valkonen M, Kartasalo K, Latonen L, Ruusuvuori P, Liimatainen K, Albarqouni S, Mungal B, George A, Demirci S, Navab N, Watanabe S, Seno S, Takenaka Y, Matsuda H, Ahmady Phoulady H, Kovalev V, Kalinovsky A, Liauchuk V, Bueno G, Fernandez-Carrobles MM, Serrano I, Deniz O, Racoceanu D, Venancio R. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA. 2017 Dec 12;318(22):2199-2210. doi: 10.1001/jama.2017.14585.
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017 Feb 2;542(7639):115-118. doi: 10.1038/nature21056. Epub 2017 Jan 25.
Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016 Dec 13;316(22):2402-2410. doi: 10.1001/jama.2016.17216.
Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sanchez CI. A survey on deep learning in medical image analysis. Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
KY2017-340
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.