Robot-Assisted Gait Therapy in the Subacute Phase of First Ischemic Stroke
NCT ID: NCT04910217
Last Updated: 2023-09-21
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
80 participants
INTERVENTIONAL
2022-05-01
2025-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Robot-Assisted Gait Training in Early-Subacute Stroke
NCT06233734
Gait Recovery in Patients After Acute Ischemic Stroke
NCT04824482
Robotic Versus Conventional Training on Hemiplegic Gait.
NCT01187277
Walking Therapy In Hemiparetic Stroke Patients Using Robotic-Assisted Treadmill Training
NCT00075283
Clinical Trial of Robot-assisted-gait-training (RAGT) in Stroke Patients
NCT02694302
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Lokomat intervention
Patients randomized into the Lokomat arm will undergo therapy with Lokomat Pro FreeD for 20-50 minutes 5-times a week, a total of 15-times during the in-hospital stay in a total time of 1,800 minutes.
Conventional rehabilitation
Patients will undergo conventional rehabilitation
Lokomat intervention
Patients will undergo therapy with Lokomat Pro FreeD device intervention.
Conventional rehabilitation
Patients in this arm will undergo conventional rehabilitation ((ergotherapy and physiotherapy) for 60 min 5 times a week, a total of 15 times within 3 weeks (a total of 1200 min)
Conventional rehabilitation
Patients will undergo conventional rehabilitation
Leg/lower body exerciser device intervention.
Patients will undergo leg/lower body exerciser device therapy.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Conventional rehabilitation
Patients will undergo conventional rehabilitation
Leg/lower body exerciser device intervention.
Patients will undergo leg/lower body exerciser device therapy.
Lokomat intervention
Patients will undergo therapy with Lokomat Pro FreeD device intervention.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* interval between stroke and first rehabilitation session \< 6 weeks (study target within 2 weeks)
* age \> 18 years
* early modified Rankin scale (mRS) 2 to 4 (pre-stroke mRS 0 to 1)
* early FAC of 0 to 3 (pre-stroke FAC of 5)
* standing ability with support up to 3 minutes and vertical tolerance \> 15 minutes
Exclusion Criteria
* history of stroke or another brain disease (tumour, multiple sclerosis, brain or spinal cord injury)
* severe internal, oncological, or surgical comorbidity preventing long-term re-habilitation or causing chronic or progressive gait disorder
* limited collaboration of any reason, moderate or severe dementia assessed by using the Montreal Cognitive Assessment (MoCA) scale
* impaired skin integrity in the lower torso and limbs preventing the use of Lokomat device
* limitations given by the Lokomat exoskeleton device (weight \> 135 kg, thigh-length 23-35 cm, shank length 35-47cm)
* limitations given by the leg/lower body exerciser (weight \> 180 kg, height \< 120 cm or \> 200 cm, (sub)acute lower limb fractures, deep vein thrombosis, skin disintegration)
* any contraindication to perform brain MRI
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Masaryk University
OTHER
VSB - Technical University of Ostrava
UNKNOWN
University Hospital Ostrava
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Ondřej Volný, MD,PhD,FESO
Role: PRINCIPAL_INVESTIGATOR
University Hospital Ostrava
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University Hospital Ostrava
Ostrava, Moravian-Silesian Region, Czechia
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Mehrholz J, Wagner K, Rutte K, Meissner D, Pohl M. Predictive validity and responsiveness of the functional ambulation category in hemiparetic patients after stroke. Arch Phys Med Rehabil. 2007 Oct;88(10):1314-9. doi: 10.1016/j.apmr.2007.06.764.
Albert SJ, Kesselring J. Neurorehabilitation of stroke. J Neurol. 2012 May;259(5):817-32. doi: 10.1007/s00415-011-6247-y. Epub 2011 Oct 1.
Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, Deruyter F, Eng JJ, Fisher B, Harvey RL, Lang CE, MacKay-Lyons M, Ottenbacher KJ, Pugh S, Reeves MJ, Richards LG, Stiers W, Zorowitz RD; American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on Quality of Care and Outcomes Research. Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2016 Jun;47(6):e98-e169. doi: 10.1161/STR.0000000000000098. Epub 2016 May 4.
Maier M, Ballester BR, Verschure PFMJ. Principles of Neurorehabilitation After Stroke Based on Motor Learning and Brain Plasticity Mechanisms. Front Syst Neurosci. 2019 Dec 17;13:74. doi: 10.3389/fnsys.2019.00074. eCollection 2019.
Morone G, Paolucci S, Cherubini A, De Angelis D, Venturiero V, Coiro P, Iosa M. Robot-assisted gait training for stroke patients: current state of the art and perspectives of robotics. Neuropsychiatr Dis Treat. 2017 May 15;13:1303-1311. doi: 10.2147/NDT.S114102. eCollection 2017.
Moucheboeuf G, Griffier R, Gasq D, Glize B, Bouyer L, Dehail P, Cassoudesalle H. Effects of robotic gait training after stroke: A meta-analysis. Ann Phys Rehabil Med. 2020 Nov;63(6):518-534. doi: 10.1016/j.rehab.2020.02.008. Epub 2020 Mar 27.
Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS. Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1995 Jan;76(1):27-32. doi: 10.1016/s0003-9993(95)80038-7.
Bruni MF, Melegari C, De Cola MC, Bramanti A, Bramanti P, Calabro RS. What does best evidence tell us about robotic gait rehabilitation in stroke patients: A systematic review and meta-analysis. J Clin Neurosci. 2018 Feb;48:11-17. doi: 10.1016/j.jocn.2017.10.048. Epub 2017 Dec 6.
Kim MS, Kim SH, Noh SE, Bang HJ, Lee KM. Robotic-Assisted Shoulder Rehabilitation Therapy Effectively Improved Poststroke Hemiplegic Shoulder Pain: A Randomized Controlled Trial. Arch Phys Med Rehabil. 2019 Jun;100(6):1015-1022. doi: 10.1016/j.apmr.2019.02.003. Epub 2019 Mar 13.
Mehrholz J, Thomas S, Kugler J, Pohl M, Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2020 Oct 22;10(10):CD006185. doi: 10.1002/14651858.CD006185.pub5.
Zaidi SF, Aghaebrahim A, Urra X, Jumaa MA, Jankowitz B, Hammer M, Nogueira R, Horowitz M, Reddy V, Jovin TG. Final infarct volume is a stronger predictor of outcome than recanalization in patients with proximal middle cerebral artery occlusion treated with endovascular therapy. Stroke. 2012 Dec;43(12):3238-44. doi: 10.1161/STROKEAHA.112.671594. Epub 2012 Nov 15.
Bucker A, Boers AM, Bot JCJ, Berkhemer OA, Lingsma HF, Yoo AJ, van Zwam WH, van Oostenbrugge RJ, van der Lugt A, Dippel DWJ, Roos YBWEM, Majoie CBLM, Marquering HA; MR CLEAN Trial Investigators (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands). Associations of Ischemic Lesion Volume With Functional Outcome in Patients With Acute Ischemic Stroke: 24-Hour Versus 1-Week Imaging. Stroke. 2017 May;48(5):1233-1240. doi: 10.1161/STROKEAHA.116.015156. Epub 2017 Mar 28.
Aurich-Schuler T, Gut A, Labruyere R. The FreeD module for the Lokomat facilitates a physiological movement pattern in healthy people - a proof of concept study. J Neuroeng Rehabil. 2019 Feb 6;16(1):26. doi: 10.1186/s12984-019-0496-x.
Bower K, Thilarajah S, Pua YH, Williams G, Tan D, Mentiplay B, Denehy L, Clark R. Dynamic balance and instrumented gait variables are independent predictors of falls following stroke. J Neuroeng Rehabil. 2019 Jan 7;16(1):3. doi: 10.1186/s12984-018-0478-4.
Heinemann AW, Linacre JM, Wright BD, Hamilton BB, Granger C. Relationships between impairment and physical disability as measured by the functional independence measure. Arch Phys Med Rehabil. 1993 Jun;74(6):566-73. doi: 10.1016/0003-9993(93)90153-2.
Berg KO, Wood-Dauphinee SL, Williams JI, Maki B. Measuring balance in the elderly: validation of an instrument. Can J Public Health. 1992 Jul-Aug;83 Suppl 2:S7-11.
Anderson C, Laubscher S, Burns R. Validation of the Short Form 36 (SF-36) health survey questionnaire among stroke patients. Stroke. 1996 Oct;27(10):1812-6. doi: 10.1161/01.str.27.10.1812.
Park IJ, Park JH, Seong HY, You JSH, Kim SJ, Min JH, Ko HY, Shin YI. Comparative Effects of Different Assistance Force During Robot-Assisted Gait Training on Locomotor Functions in Patients With Subacute Stroke: An Assessor-Blind, Randomized Controlled Trial. Am J Phys Med Rehabil. 2019 Jan;98(1):58-64. doi: 10.1097/PHM.0000000000001027.
Barca C, Foray C, Hermann S, Doring C, Schafers M, Jacobs AH, Zinnhardt B. Characterization of the inflammatory post-ischemic tissue by full volumetric analysis of a multimodal imaging dataset. Neuroimage. 2020 Nov 15;222:117217. doi: 10.1016/j.neuroimage.2020.117217. Epub 2020 Jul 31.
Baudat C, Marechal B, Corredor-Jerez R, Kober T, Meuli R, Hagmann P, Michel P, Maeder P, Dunet V. Automated MRI-based volumetry of basal ganglia and thalamus at the chronic phase of cortical stroke. Neuroradiology. 2020 Nov;62(11):1371-1380. doi: 10.1007/s00234-020-02477-x. Epub 2020 Jun 17.
Bernarding J, Braun J, Hohmann J, Mansmann U, Hoehn-Berlage M, Stapf C, Wolf KJ, Tolxdorff T. Histogram-based characterization of healthy and ischemic brain tissues using multiparametric MR imaging including apparent diffusion coefficient maps and relaxometry. Magn Reson Med. 2000 Jan;43(1):52-61. doi: 10.1002/(sici)1522-2594(200001)43:13.0.co;2-5.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
FNO-Lokowalkers-2021
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.