Efficacy of End-Effector Robot-Assisted Gait Training in Subacute Stroke Patients
NCT ID: NCT03805009
Last Updated: 2024-04-10
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
26 participants
INTERVENTIONAL
2013-03-19
2018-09-30
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
The aim of this pilot study is to evaluate the efficacy of end-effector RAGT in subacute stroke patients in terms of clinical outcomes and gait kinematics, comparing them with conventional gait rehabilitation program.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Efficacy of End-Effector Robot-Assisted Gait Training Combined With Robotic Balance Training in Subacute Stroke Patients
NCT04162197
Clinical Trial of Robot-assisted-gait-training (RAGT) in Stroke Patients
NCT02694302
Robot-Assisted Gait Therapy in the Subacute Phase of First Ischemic Stroke
NCT04910217
Effects on Subacute Stroke With Robotic Assistive Gait Training
NCT07040215
The Effects of Gait Rehabilitation After Stroke by Treadmill-based Robotics Versus Traditional Gait Training
NCT03688165
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NON_RANDOMIZED
PARALLEL
TREATMENT
SINGLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Robotic Group (RG)
Robotic Group (RG) will perform, in addition to conventional therapy, gait training using an end-effector robotic device for Robot-Assisted Gait Training (RAGT), 3 times/week for 20 sessions. During the training, patients will be asked to walk, at a varying speed, for 45 minutes and a partial Body Weight Support (BWS). Participants will start with 30-40% of BWS and an initial speed of 1.5 km/h; increasing to a maximum of between 2.2 and 2.5 km/h and reducing the initial BWS to 15%. The therapist will provide any help during sessions if required. Over 45 minutes, the patient simulates a minimum of 300 steps; patients could rest during the session, though they will be asked to walk continuously for a minimum of 5 minutes during each session.
Robot-Assisted Gait Training (RAGT)
The Robotic Group (RG) performs a Robot-Assisted Gait Training (RAGT) using an end-effector robotic device (G-EO system-Reha Technology-Olten, Switzerland).
Conventional Group (CG)
Conventional Group (CG) will perform conventional gait rehabilitation program. The treatment will include: muscle strengthening exercises and stretching of the lower limb, and static and dynamic exercises for the recovery of balance in the supine and standing positions using assistive devices; training gait exercises with parallel bars or in open spaces performed both with and without assistive devices; training to climb up and down stairs; exercises to improve proprioception in the supine, sitting and standing positions, using a proprioceptive footboard; exercises to improve trunk control.
No interventions assigned to this group
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Robot-Assisted Gait Training (RAGT)
The Robotic Group (RG) performs a Robot-Assisted Gait Training (RAGT) using an end-effector robotic device (G-EO system-Reha Technology-Olten, Switzerland).
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* 2 weeks up to 6 months post the acute event (subacute patients)
* age between 18-80 years
* ability to fit into the end-effector footplates
* no significant limitation of joint range of motion
* ability to tolerate upright standing for 60 seconds
* ability to walk unassisted or with little assistance
* ability to give written consent
* compliance with the study procedures
Exclusion Criteria
* medical issue that precludes full weight bearing and ambulation (e.g. orthopaedic injuries, pain, severe osteoporosis, or severe spasticity)
* cognitive and/or communicative disability (e.g. due to brain injury): inability to understand the instructions required for the study
* cardiac pathologies, anxiety or psychosis that might interfere with the use of the equipment or testing
Written informed consent was obtained from each subject.
18 Years
80 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Fondazione Don Carlo Gnocchi Onlus
OTHER
IRCCS San Raffaele Roma
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Marco Franceschini, MD
Role: STUDY_CHAIR
IRCCS San Raffaele Pisana
Sanaz Pournajaf, Dr
Role: PRINCIPAL_INVESTIGATOR
IRCCS San Raffaele Pisana
Michela Goffredo, Ing
Role: PRINCIPAL_INVESTIGATOR
IRCCS San Raffaele Pisana
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
IRCCS San Raffaele Pisana
Rome, RM, Italy
Fondazione Don Carlo Gnocchi Onlus
Rome, RM, Italy
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Palmieri L, Barchielli A, Cesana G, de Campora E, Goldoni CA, Spolaore P, Uguccioni M, Vancheri F, Vanuzzo D, Ciccarelli P, Giampaoli S; Research Group of the Project 'Italian National Register of Coronary and Cerebrovascular Events'. The Italian register of cardiovascular diseases: attack rates and case fatality for cerebrovascular events. Cerebrovasc Dis. 2007;24(6):530-9. doi: 10.1159/000110423. Epub 2007 Oct 29.
Swinnen E, Beckwee D, Meeusen R, Baeyens JP, Kerckhofs E. Does robot-assisted gait rehabilitation improve balance in stroke patients? A systematic review. Top Stroke Rehabil. 2014 Mar-Apr;21(2):87-100. doi: 10.1310/tsr2102-87.
Eng JJ, Tang PF. Gait training strategies to optimize walking ability in people with stroke: a synthesis of the evidence. Expert Rev Neurother. 2007 Oct;7(10):1417-36. doi: 10.1586/14737175.7.10.1417.
Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009 Aug;8(8):741-54. doi: 10.1016/S1474-4422(09)70150-4.
Mehrholz J, Thomas S, Werner C, Kugler J, Pohl M, Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2017 May 10;5(5):CD006185. doi: 10.1002/14651858.CD006185.pub4.
Pons, J. L. (2008). Wearable robots: biomechatronic exoskeletons. John Wiley & Sons. 127-164.
Hesse S, Waldner A, Tomelleri C. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J Neuroeng Rehabil. 2010 Jun 28;7:30. doi: 10.1186/1743-0003-7-30.
Mehrholz J, Pohl M. Electromechanical-assisted gait training after stroke: a systematic review comparing end-effector and exoskeleton devices. J Rehabil Med. 2012 Mar;44(3):193-9. doi: 10.2340/16501977-0943.
Kelley CP, Childress J, Boake C, Noser EA. Over-ground and robotic-assisted locomotor training in adults with chronic stroke: a blinded randomized clinical trial. Disabil Rehabil Assist Technol. 2013 Mar;8(2):161-8. doi: 10.3109/17483107.2012.714052. Epub 2012 Sep 20.
Cho DY, Park SW, Lee MJ, Park DS, Kim EJ. Effects of robot-assisted gait training on the balance and gait of chronic stroke patients: focus on dependent ambulators. J Phys Ther Sci. 2015 Oct;27(10):3053-7. doi: 10.1589/jpts.27.3053. Epub 2015 Oct 30.
Li L, Ding L, Chen N, Mao Y, Huang D, Li L. Improved walking ability with wearable robot-assisted training in patients suffering chronic stroke. Biomed Mater Eng. 2015;26 Suppl 1:S329-40. doi: 10.3233/BME-151320.
Bonnyaud C, Pradon D, Boudarham J, Robertson J, Vuillerme N, Roche N. Effects of gait training using a robotic constraint (Lokomat(R)) on gait kinematics and kinetics in chronic stroke patients. J Rehabil Med. 2014 Feb;46(2):132-8. doi: 10.2340/16501977-1248.
Lonini L, Shawen N, Scanlan K, Rymer WZ, Kording KP, Jayaraman A. Accelerometry-enabled measurement of walking performance with a robotic exoskeleton: a pilot study. J Neuroeng Rehabil. 2016 Mar 31;13:35. doi: 10.1186/s12984-016-0142-9.
Gandolfi M, Geroin C, Picelli A, Munari D, Waldner A, Tamburin S, Marchioretto F, Smania N. Robot-assisted vs. sensory integration training in treating gait and balance dysfunctions in patients with multiple sclerosis: a randomized controlled trial. Front Hum Neurosci. 2014 May 22;8:318. doi: 10.3389/fnhum.2014.00318. eCollection 2014.
Sale P, Russo EF, Russo M, Masiero S, Piccione F, Calabro RS, Filoni S. Effects on mobility training and de-adaptations in subjects with Spinal Cord Injury due to a Wearable Robot: a preliminary report. BMC Neurol. 2016 Jan 28;16:12. doi: 10.1186/s12883-016-0536-0.
Dundar U, Toktas H, Solak O, Ulasli AM, Eroglu S. A comparative study of conventional physiotherapy versus robotic training combined with physiotherapy in patients with stroke. Top Stroke Rehabil. 2014 Nov-Dec;21(6):453-61. doi: 10.1310/tsr2106-453.
Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 2008 Jun;39(6):1786-92. doi: 10.1161/STROKEAHA.107.504779. Epub 2008 May 8.
Aprile I, Iacovelli C, Padua L, Galafate D, Criscuolo S, Gabbani D, Cruciani A, Germanotta M, Di Sipio E, De Pisi F, Franceschini M. Efficacy of Robotic-Assisted Gait Training in chronic stroke patients: Preliminary results of an Italian bi-centre study. NeuroRehabilitation. 2017;41(4):775-782. doi: 10.3233/NRE-172156.
Taveggia G, Borboni A, Mule C, Villafane JH, Negrini S. Conflicting results of robot-assisted versus usual gait training during postacute rehabilitation of stroke patients: a randomized clinical trial. Int J Rehabil Res. 2016 Mar;39(1):29-35. doi: 10.1097/MRR.0000000000000137.
Mao YR, Lo WL, Lin Q, Li L, Xiao X, Raghavan P, Huang DF. The Effect of Body Weight Support Treadmill Training on Gait Recovery, Proximal Lower Limb Motor Pattern, and Balance in Patients with Subacute Stroke. Biomed Res Int. 2015;2015:175719. doi: 10.1155/2015/175719. Epub 2015 Nov 16.
Davis RB, Ounpuu S, Tyburski D, Gage JR. A gait analysis data collection and reduction technique. Hum MovSci 1991; 10: 575-587.
Winter DA. Biomechanics and motor control of human movement. John Wiley & Sons, 2009.
Nichols-Larsen DS, Clark PC, Zeringue A, Greenspan A, Blanton S. Factors influencing stroke survivors' quality of life during subacute recovery. Stroke. 2005 Jul;36(7):1480-4. doi: 10.1161/01.STR.0000170706.13595.4f. Epub 2005 Jun 9.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
RP 15/13
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.