Preventing Posttraumatic Osteoarthritis With Physical Activity Promotion
NCT ID: NCT04906499
Last Updated: 2024-01-29
Study Results
Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.
View full resultsBasic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
7 participants
INTERVENTIONAL
2021-08-01
2022-09-09
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Physical Activity, Knee Joint Loading and Joint Health
NCT05306054
Knee Arthroplasty Activity Trial
NCT04107649
Prehabilitation Effect on Function and Patient Satisfaction Following Total Knee Arthroplasty
NCT05892133
Physical Activity Levels During Recovery Following Knee Arthroplasty
NCT04240769
Return to Physical Activities After Total Knee Arthroplasty
NCT03039907
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Physical Activity Promotion Group
Participants will receive a text message each morning with a personalized, daily step count goal and a link used to confirm receipt of the goal. The preceding 10 days of step data will be rank ordered and the 60th percentile step count will be set as the goal for the next day.
Physical Activity Promotion
After enrolling, participants will be outfitted with a Fitbit Charge 2 activity monitor. The monitor will be worn during all waking hours, and compliance will be considered as a day with ≥ 1,000 steps. Participants will complete a 14-day "run-in" observation period while wearing the Fitbit but no PA promotion will occur. Individuals who are noncompliant during the "run in" period (\<10 days with \<1,000 steps) will be removed. Participants will receive a text message each morning with a personalized, daily step count goal and a link used to confirm receipt of the goal. The preceding 10 days of step data will be rank ordered and the 60th percentile step count will be set as the goal for the next day.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Physical Activity Promotion
After enrolling, participants will be outfitted with a Fitbit Charge 2 activity monitor. The monitor will be worn during all waking hours, and compliance will be considered as a day with ≥ 1,000 steps. Participants will complete a 14-day "run-in" observation period while wearing the Fitbit but no PA promotion will occur. Individuals who are noncompliant during the "run in" period (\<10 days with \<1,000 steps) will be removed. Participants will receive a text message each morning with a personalized, daily step count goal and a link used to confirm receipt of the goal. The preceding 10 days of step data will be rank ordered and the 60th percentile step count will be set as the goal for the next day.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Provide informed consent and sign a HIPPA form prior to any study procedures are performed
* Have completed all other formal physical therapy and therapeutic exercise regimens, and will not be engaging in any other formal therapy for their ACLR during the study
* Are between the ages of 18 and 35.
* Underwent an ACLR no earlier than 6 months and no later than 5 years prior to enrollment.
* Demonstrate \< 8,000 steps per day during the screening phase of the study as assessed using the Actigraph GT9X Link monitor.
* Demonstrate clinically relevant-knee symptoms, defined as a Knee Injury and Osteoarthritis Outcomes Score (KOOS) quality of life subscale \< 72.2
Exclusion Criteria
* The participant underwent an ACLR revision surgery due to a previous ACL graft injury.
* Multiple ligament surgery was indicated at the time of ACLR surgery.
* A lower extremity fracture was suffered during the ACL injury.
* The participant has been diagnosed with osteoarthritis in either knee
* They have a cochlear implant, metal in body, claustrophobia, or history of seizures.
18 Years
35 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
North Carolina Translational and Clinical Sciences Institute
OTHER
University of North Carolina, Chapel Hill
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Brian Pietrosimone, PhD
Role: PRINCIPAL_INVESTIGATOR
University of North Carolina, Chapel Hill
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Fetzer Hall, University of North Carolina
Chapel Hill, North Carolina, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Cross M, Smith E, Hoy D, Nolte S, Ackerman I, Fransen M, Bridgett L, Williams S, Guillemin F, Hill CL, Laslett LL, Jones G, Cicuttini F, Osborne R, Vos T, Buchbinder R, Woolf A, March L. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis. 2014 Jul;73(7):1323-30. doi: 10.1136/annrheumdis-2013-204763. Epub 2014 Feb 19.
Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, Gabriel S, Hirsch R, Hochberg MC, Hunder GG, Jordan JM, Katz JN, Kremers HM, Wolfe F; National Arthritis Data Workgroup. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008 Jan;58(1):26-35. doi: 10.1002/art.23176.
Furner SE, Hootman JM, Helmick CG, Bolen J, Zack MM. Health-related quality of life of US adults with arthritis: analysis of data from the behavioral risk factor surveillance system, 2003, 2005, and 2007. Arthritis Care Res (Hoboken). 2011 Jun;63(6):788-99. doi: 10.1002/acr.20430.
Alkan BM, Fidan F, Tosun A, Ardicoglu O. Quality of life and self-reported disability in patients with knee osteoarthritis. Mod Rheumatol. 2014 Jan;24(1):166-71. doi: 10.3109/14397595.2013.854046.
Brown TD, Johnston RC, Saltzman CL, Marsh JL, Buckwalter JA. Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J Orthop Trauma. 2006 Nov-Dec;20(10):739-44. doi: 10.1097/01.bot.0000246468.80635.ef.
Luc B, Gribble PA, Pietrosimone BG. Osteoarthritis prevalence following anterior cruciate ligament reconstruction: a systematic review and numbers-needed-to-treat analysis. J Athl Train. 2014 Nov-Dec;49(6):806-19. doi: 10.4085/1062-6050-49.3.35.
Murphy L, Schwartz TA, Helmick CG, Renner JB, Tudor G, Koch G, Dragomir A, Kalsbeek WD, Luta G, Jordan JM. Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheum. 2008 Sep 15;59(9):1207-13. doi: 10.1002/art.24021.
Andriacchi TP, Mundermann A. The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis. Curr Opin Rheumatol. 2006 Sep;18(5):514-8. doi: 10.1097/01.bor.0000240365.16842.4e.
Bell DR, Pfeiffer KA, Cadmus-Bertram LA, Trigsted SM, Kelly A, Post EG, Hart JM, Cook DB, Dunn WR, Kuenze C. Objectively Measured Physical Activity in Patients After Anterior Cruciate Ligament Reconstruction. Am J Sports Med. 2017 Jul;45(8):1893-1900. doi: 10.1177/0363546517698940. Epub 2017 Apr 18.
Nelson AE, Allen KD, Golightly YM, Goode AP, Jordan JM. A systematic review of recommendations and guidelines for the management of osteoarthritis: The chronic osteoarthritis management initiative of the U.S. bone and joint initiative. Semin Arthritis Rheum. 2014 Jun;43(6):701-12. doi: 10.1016/j.semarthrit.2013.11.012. Epub 2013 Dec 4.
Palmieri-Smith RM, Cameron KL, DiStefano LJ, Driban JB, Pietrosimone B, Thomas AC, Tourville TW, Consortium ATO. The Role of Athletic Trainers in Preventing and Managing Posttraumatic Osteoarthritis in Physically Active Populations: a Consensus Statement of the Athletic Trainers' Osteoarthritis Consortium. J Athl Train. 2017 Jun 2;52(6):610-623. doi: 10.4085/1062-6050-52.2.04.
Tudor-Locke C, Craig CL, Brown WJ, Clemes SA, De Cocker K, Giles-Corti B, Hatano Y, Inoue S, Matsudo SM, Mutrie N, Oppert JM, Rowe DA, Schmidt MD, Schofield GM, Spence JC, Teixeira PJ, Tully MA, Blair SN. How many steps/day are enough? For adults. Int J Behav Nutr Phys Act. 2011 Jul 28;8:79. doi: 10.1186/1479-5868-8-79.
Ingelsrud LH, Granan LP, Terwee CB, Engebretsen L, Roos EM. Proportion of Patients Reporting Acceptable Symptoms or Treatment Failure and Their Associated KOOS Values at 6 to 24 Months After Anterior Cruciate Ligament Reconstruction: A Study From the Norwegian Knee Ligament Registry. Am J Sports Med. 2015 Aug;43(8):1902-7. doi: 10.1177/0363546515584041. Epub 2015 May 14.
Roos EM, Toksvig-Larsen S. Knee injury and Osteoarthritis Outcome Score (KOOS) - validation and comparison to the WOMAC in total knee replacement. Health Qual Life Outcomes. 2003 May 25;1:17. doi: 10.1186/1477-7525-1-17.
Pfeiffer S, Harkey MS, Stanley LE, Blackburn JT, Padua DA, Spang JT, Marshall SW, Jordan JM, Schmitz R, Nissman D, Pietrosimone B. Associations Between Slower Walking Speed and T1rho Magnetic Resonance Imaging of Femoral Cartilage Following Anterior Cruciate Ligament Reconstruction. Arthritis Care Res (Hoboken). 2018 Aug;70(8):1132-1140. doi: 10.1002/acr.23477. Epub 2018 Jul 4.
Pietrosimone B, Nissman D, Padua DA, Blackburn JT, Harkey MS, Creighton RA, Kamath GM, Healy K, Schmitz R, Driban JB, Marshall SW, Jordan JM, Spang JT. Associations between cartilage proteoglycan density and patient outcomes 12months following anterior cruciate ligament reconstruction. Knee. 2018 Jan;25(1):118-129. doi: 10.1016/j.knee.2017.10.005. Epub 2018 Jan 9.
Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc. 1998 May;30(5):777-81. doi: 10.1097/00005768-199805000-00021.
McClain JJ, Sisson SB, Tudor-Locke C. Actigraph accelerometer interinstrument reliability during free-living in adults. Med Sci Sports Exerc. 2007 Sep;39(9):1509-14. doi: 10.1249/mss.0b013e3180dc9954.
Roos EM, Roos HP, Ekdahl C, Lohmander LS. Knee injury and Osteoarthritis Outcome Score (KOOS)--validation of a Swedish version. Scand J Med Sci Sports. 1998 Dec;8(6):439-48. doi: 10.1111/j.1600-0838.1998.tb00465.x.
Salavati M, Akhbari B, Mohammadi F, Mazaheri M, Khorrami M. Knee injury and Osteoarthritis Outcome Score (KOOS); reliability and validity in competitive athletes after anterior cruciate ligament reconstruction. Osteoarthritis Cartilage. 2011 Apr;19(4):406-10. doi: 10.1016/j.joca.2011.01.010. Epub 2011 Jan 19.
Xu X, Tupy S, Robertson S, Miller AL, Correll D, Tivis R, Nigg CR. Successful adherence and retention to daily monitoring of physical activity: Lessons learned. PLoS One. 2018 Sep 20;13(9):e0199838. doi: 10.1371/journal.pone.0199838. eCollection 2018.
Adams MA, Sallis JF, Norman GJ, Hovell MF, Hekler EB, Perata E. An adaptive physical activity intervention for overweight adults: a randomized controlled trial. PLoS One. 2013 Dec 9;8(12):e82901. doi: 10.1371/journal.pone.0082901. eCollection 2013.
Hurley JC, Hollingshead KE, Todd M, Jarrett CL, Tucker WJ, Angadi SS, Adams MA. The Walking Interventions Through Texting (WalkIT) Trial: Rationale, Design, and Protocol for a Factorial Randomized Controlled Trial of Adaptive Interventions for Overweight and Obese, Inactive Adults. JMIR Res Protoc. 2015 Sep 11;4(3):e108. doi: 10.2196/resprot.4856.
Kuenze C, Lisee C, Pfeiffer KA, Cadmus-Bertram L, Post EG, Biese K, Bell DR. Sex differences in physical activity engagement after ACL reconstruction. Phys Ther Sport. 2019 Jan;35:12-17. doi: 10.1016/j.ptsp.2018.10.016. Epub 2018 Oct 26.
Kuenze C, Cadmus-Bertram L, Pfieffer K, Trigsted S, Cook D, Lisee C, Bell D. Relationship Between Physical Activity and Clinical Outcomes After ACL Reconstruction. J Sport Rehabil. 2019 Feb 1;28(2):180-187. doi: 10.1123/jsr.2017-0186. Epub 2018 Oct 15.
Lisee CM, Montoye AHK, Lewallen NF, Hernandez M, Bell DR, Kuenze CM. Assessment of Free-Living Cadence Using ActiGraph Accelerometers Between Individuals With and Without Anterior Cruciate Ligament Reconstruction. J Athl Train. 2020 Sep 1;55(9):994-1000. doi: 10.4085/1062-6050-425-19.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol and Statistical Analysis Plan
Document Type: Informed Consent Form
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
2KR1372103
Identifier Type: OTHER_GRANT
Identifier Source: secondary_id
21-0614
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.