Epidemiology of Anaerobic Bacteria in Cystic Fibrosis Patients: Descriptive and Non-interventional Study

NCT ID: NCT04879381

Last Updated: 2021-06-30

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

101 participants

Study Classification

OBSERVATIONAL

Study Start Date

2018-03-29

Study Completion Date

2018-10-05

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Recently, the respiratory microbiota characterisation of a Cystic Fibrosis (CF) patients' cohort has highlighted the potential role of anaerobes, and specially species belonging to the genus Porphyromonas, in the first P. aeruginosa colonization.

The aim of this project is to describe the bacterial anaerobic population in the respiratory microbiota of a CF cohort. At the end of this study, an inventory of the anaerobic microbiota in CF respiratory samples will be establish in relation to the patients' pulmonary function and P. aeruginosa colonization status in order to speculate about the pulmonary anaerobes roles, still unknown.

The innovative aspect of the ANA-MUCO study is the use of a specific sample kit designed for the study which allows preserving anaerobic bacteria in sputum according to the recommendations of the International Human Microbiome Standards (IHMS). Extended-culture and molecular approaches will be performed to identify and describe the anaerobic bacteria which could be involved in the pulmonary homeostasis in CF respiratory samples.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Cystic Fibrosis (CF) is a lethal genetic disease whose prognostic depends on the patients' respiratory impairment. Indeed, the airways microbial chronic colonization, particularly to Pseudomonas aeruginosa, leads to infectious exacerbations and to noteworthy respiratory function impairment and represents the main cause of morbidity and mortality. Nowadays, antibiotherapy is the main therapeutic solution to thwart bacterial development and to slow respiratory function degradation. However, during the disease progression, this therapeutical approach is limited by the bacteria accommodation and antibiotic resistance development.

Thanks to the development of high-throughput sequencing methods, the respiratory microbiota of CF patients has been mainly described and points the way to new therapeutic approaches. It has been establish that, i) from an early age, the respiratory microbiota of CF children is modified in comparison with the healthy children one, ii) bacterial diversity decrease progressively throughout the disease evolution, iii) anaerobes represent an important part of the healthy and CF respiratory microbiota. Thus pulmonary microbiota composition could be a better disease progression indicator than the only detection of P. aeruginosa in CF respiratory samples. Furthermore, the respiratory microbiota could influence the pathogenesis through direct interactions between micro-organism/micro-organism or micro-organism/host. Recently, thanks to the respiratory microbiota characterisation of a CF patients' cohort (MUCOBIOME study, 2012-2015), the potential role of anaerobes (and particularly species belonging to the genus Porphyromonas) in the first P. aeruginosa colonization has been highlighted. Indeed, the respiratory microbiota study of 34 CF patients has revealed that if patients are deprived or lowly colonized by Porphyromonas spp., the relative risk of P. aeruginosa colonization is 3.7 fold higher. Conversely, the relative abundance's increase of Porphyromonas spp. in CF patients receiving Ivacaftor treatment is correlated with the respiratory function improvement. Thus, in addition to be used as biomarker, the investigators speculate on the fact that some strict anaerobic species, such as Porphyromonas spp., could act as CF pathogens (like P. aeruginosa) competitors and limit their setting up in the airways.

The investigators see here the necessity of complementary studies in order to better characterise anaerobic bacteria in the airways. The aim of the ANA-MUCO study is to identify and describe anaerobic bacteria in sputum of a CF patients' cohort, to characterise the antibiotic resistance profiles of the anaerobic species isolated, to study the anaerobes repartition within the CF population and to evaluate the interactions between anaerobes and CF pathogens (P. aeruginosa, S. aureus, H. influenzae, …). In order to be the most exhaustive as possible in the anaerobes description, the innovative aspect of this study is the conception and the use of a specific sample kit which preserves anaerobic conditions in sputum according to the recommendations of the International Human Microbiome Standards (IHMS). Then, extended-culture and molecular approaches will be performed to identify the anaerobic bacteria which could be involved in the pulmonary homeostasis in CF respiratory samples.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Cystic Fibrosis

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

PROSPECTIVE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Cystic Fibrosis patients

Sputum samples

Sputum samples

Intervention Type OTHER

During consultation, one expectoration will be performed.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Sputum samples

During consultation, one expectoration will be performed.

Intervention Type OTHER

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Patients with a confirmed diagnosis of Cystic Fibrosis regardless of CFTR genotype
* Persons affiliated to the social security system
* Minor or major patients able to expectorate spontaneously or after induction
* Consent signed by the patient or the holder of parental authority for the children

Exclusion Criteria

* Persons deprived of liberty, persons under guardianship or curatorship, persons in emergency situations
* Persons non affiliated to a social security system or not entitled
* Pulmonary transplant patients
* Refusal to participate to the study
Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Vaincre la Mucoviscidose

OTHER

Sponsor Role collaborator

University Hospital, Brest

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Geneviève HERY-ARNAUD, Professor

Role: PRINCIPAL_INVESTIGATOR

University Hospital, Brest

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

CHRU de Brest

Brest, , France

Site Status

Fondation Ildys

Roscoff, , France

Site Status

Countries

Review the countries where the study has at least one active or historical site.

France

References

Explore related publications, articles, or registry entries linked to this study.

Nixon GM, Armstrong DS, Carzino R, Carlin JB, Olinsky A, Robertson CF, Grimwood K. Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis. J Pediatr. 2001 May;138(5):699-704. doi: 10.1067/mpd.2001.112897.

Reference Type BACKGROUND
PMID: 11343046 (View on PubMed)

Cox MJ, Allgaier M, Taylor B, Baek MS, Huang YJ, Daly RA, Karaoz U, Andersen GL, Brown R, Fujimura KE, Wu B, Tran D, Koff J, Kleinhenz ME, Nielson D, Brodie EL, Lynch SV. Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. PLoS One. 2010 Jun 23;5(6):e11044. doi: 10.1371/journal.pone.0011044.

Reference Type BACKGROUND
PMID: 20585638 (View on PubMed)

Renwick J, McNally P, John B, DeSantis T, Linnane B, Murphy P; SHIELD CF. The microbial community of the cystic fibrosis airway is disrupted in early life. PLoS One. 2014 Dec 19;9(12):e109798. doi: 10.1371/journal.pone.0109798. eCollection 2014.

Reference Type BACKGROUND
PMID: 25526264 (View on PubMed)

Klepac-Ceraj V, Lemon KP, Martin TR, Allgaier M, Kembel SW, Knapp AA, Lory S, Brodie EL, Lynch SV, Bohannan BJ, Green JL, Maurer BA, Kolter R. Relationship between cystic fibrosis respiratory tract bacterial communities and age, genotype, antibiotics and Pseudomonas aeruginosa. Environ Microbiol. 2010 May;12(5):1293-303. doi: 10.1111/j.1462-2920.2010.02173.x. Epub 2010 Feb 23.

Reference Type BACKGROUND
PMID: 20192960 (View on PubMed)

Sibley CD, Surette MG. The polymicrobial nature of airway infections in cystic fibrosis: Cangene Gold Medal Lecture. Can J Microbiol. 2011 Feb;57(2):69-77. doi: 10.1139/w10-105.

Reference Type BACKGROUND
PMID: 21326348 (View on PubMed)

Bernarde C, Keravec M, Mounier J, Gouriou S, Rault G, Ferec C, Barbier G, Hery-Arnaud G. Impact of the CFTR-potentiator ivacaftor on airway microbiota in cystic fibrosis patients carrying a G551D mutation. PLoS One. 2015 Apr 8;10(4):e0124124. doi: 10.1371/journal.pone.0124124. eCollection 2015.

Reference Type BACKGROUND
PMID: 25853698 (View on PubMed)

Guilloux CA, Lamoureux C, Hery-Arnaud G. [Anaerobic bacteria, the unknown members of the lung microbiota]. Med Sci (Paris). 2018 Mar;34(3):253-260. doi: 10.1051/medsci/20183403014. Epub 2018 Mar 16. French.

Reference Type BACKGROUND
PMID: 29547112 (View on PubMed)

Tunney MM, Field TR, Moriarty TF, Patrick S, Doering G, Muhlebach MS, Wolfgang MC, Boucher R, Gilpin DF, McDowell A, Elborn JS. Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. Am J Respir Crit Care Med. 2008 May 1;177(9):995-1001. doi: 10.1164/rccm.200708-1151OC. Epub 2008 Feb 8.

Reference Type BACKGROUND
PMID: 18263800 (View on PubMed)

Smyth AR, Bell SC, Bojcin S, Bryon M, Duff A, Flume P, Kashirskaya N, Munck A, Ratjen F, Schwarzenberg SJ, Sermet-Gaudelus I, Southern KW, Taccetti G, Ullrich G, Wolfe S; European Cystic Fibrosis Society. European Cystic Fibrosis Society Standards of Care: Best Practice guidelines. J Cyst Fibros. 2014 May;13 Suppl 1:S23-42. doi: 10.1016/j.jcf.2014.03.010.

Reference Type BACKGROUND
PMID: 24856775 (View on PubMed)

Hery-Arnaud G, Nowak E, Caillon J, David V, Dirou A, Revert K, Munck MR, Frachon I, Haloun A, Horeau-Langlard D, Le Bihan J, Danner-Boucher I, Ramel S, Pelletier MP, Rosec S, Gouriou S, Poulhazan E, Payan C, Ferec C, Rault G, Le Gal G, Le Berre R. Evaluation of quantitative PCR for early diagnosis of Pseudomonas aeruginosa infection in cystic fibrosis: a prospective cohort study. Clin Microbiol Infect. 2017 Mar;23(3):203-207. doi: 10.1016/j.cmi.2016.11.016. Epub 2016 Nov 27.

Reference Type BACKGROUND
PMID: 27903460 (View on PubMed)

Lamoureux C, Guilloux CA, Beauruelle C, Jolivet-Gougeon A, Hery-Arnaud G. Anaerobes in cystic fibrosis patients' airways. Crit Rev Microbiol. 2019 Feb;45(1):103-117. doi: 10.1080/1040841X.2018.1549019. Epub 2019 Jan 21.

Reference Type BACKGROUND
PMID: 30663924 (View on PubMed)

Société Française de Microbiologie. REMIC, Référentiel en Microbiologie Médicale, 2 volumes. SFM, 2015. 856 p. ISBN 9782878050325.

Reference Type BACKGROUND

CA-SFM EUCAST [En ligne]. Société Française de Microbiologie, 2013 [consulté le 11 janvier 2018]. Available on: http://www.sfmmicrobiologie.org/UserFiles/files/casfm/CASFM2013vjuin.pdf

Reference Type BACKGROUND

Héry-Arnaud et al., 2017, European patent EP17306297 Methods for predicting the risk of developping pulmonary colonization/infection by Pseudomonas aeruginosa.

Reference Type BACKGROUND

Keravec M, Mounier J, Guilloux CA, Fangous MS, Mondot S, Vallet S, Gouriou S, Le Berre R, Rault G, Ferec C, Barbier G, Lepage P, Hery-Arnaud G. Porphyromonas, a potential predictive biomarker of Pseudomonas aeruginosa pulmonary infection in cystic fibrosis. BMJ Open Respir Res. 2019 Mar 12;6(1):e000374. doi: 10.1136/bmjresp-2018-000374. eCollection 2019.

Reference Type BACKGROUND
PMID: 30956802 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

ANA-MUCO ( 29BRC18.0045)

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Airway Microbiome of Cystic Fibrosis Patients
NCT06057558 ACTIVE_NOT_RECRUITING NA