The Use of Biochemical Analyzes to Monitor the Development of Wounds
NCT ID: NCT04507724
Last Updated: 2021-05-18
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
41 participants
OBSERVATIONAL
2018-10-19
2020-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Part 1: The aim of this part of the study was to collect wound swabs and to answer the question whether the rapid diagnostic tool using enzyme activities can display an infection prematurely. This means that an increased enzyme activity (especially MPO, NHE, LYS, gelatinase, pH) measured overed 3 days, would indicate a change in the wound bed (infection, Inflammation) earlier than the regularly performed clinical assessment.
Part 2: The aim of this part of the study was to evaluate (I) the possibility of wound fluid acquisition by means of an "additional collector" during ongoing NPWT and to answer if (II) this secretion can be biochemically analyzed for enzyme activities in order to be able to detect a change in the wound situation at an early stage.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Investigation of a Novel Wound Gel to Improve Wound Healing in Chronic Wounds
NCT03686904
The Difference in Wound Size Reduction Comparing Two Frequently Used Wound Dressings in Everyday Care
NCT03596112
Next Science Wound Gel Efficacy in Chronic Wound Versus Standard of Care
NCT02138994
Rapid Identification of Key Pathogens in Wound Infection by Molecular Means
NCT00287599
Mechanisms Underlying Impaired Diabetic Wound Healing
NCT00777712
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Part 1: Two wound swabs are taken. One used for routinely performed microbiological analysis and the second will be used for biochemical analysis (enzyme activities). The aim of the wound swabs is to answer the question whether the rapid diagnostic tool used in the examination can display an infection prematurely or not. This means that an increased enzyme activity (especially MPO, NHE, LYS, gelatinase, pH) would indicate a change in the wound bed (infection, inflammation) earlier than the regular clinical assessment. These wound swabs are expected to function as an improvement of the biochemical assays or rather of the technology concerning sensitivity and specificity of, for example, the pH number, the MPO, the LYS, the gelatinase and the elastase. In addition to that, the correlation between the Enzyme activities and the course of the infection will be examined. This technology is supposed to be later used as an early infection diagnostic tool in wound fluids. The followup of this testing system is a crucial prerequisite for the application of the technology in VAC therapy (part 2).
Part 2: The findings of this examination will be used to investigate the applicability of the developed in-vitro early infection diagnostic tool in negative-pressure therapy (VAC therapy; vacuum assisted closure).
Patients of the plastic surgery with a NPWT are included in this prospective study. Before the NPWT will be applied, two swabs (biochemical and microbiological analysis) of the wounds will be taken. After installation of the dressing, the connecting tube between the wound and the vacuum-generating device will be cut and an "additional collector" will be inserted. This collector will be changed daily and afterwards the concentrations of enzymes (lysozyme, elastase, myeloperoxidase) will be biochemically analyzed.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* older than 18 years old
* open wound of varying etiology
* VAC therapy (KCI) (part 2)
Exclusion Criteria
* pregnant women
* less than three measurement data (less than three swabs) = part 1
* VAC-instill therapy = part 2
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Qualizyme Diagnostics GmbH & Co KG
INDUSTRY
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Christina Helene Wolfsberger
Sub-Investigator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Michael Schintler, Prof.
Role: PRINCIPAL_INVESTIGATOR
Medical University of Graz
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz
Graz, , Austria
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
McDaniel JC, Roy S, Wilgus TA. Neutrophil activity in chronic venous leg ulcers--a target for therapy? Wound Repair Regen. 2013 May-Jun;21(3):339-51. doi: 10.1111/wrr.12036. Epub 2013 Mar 28.
Trengove NJ, Bielefeldt-Ohmann H, Stacey MC. Mitogenic activity and cytokine levels in non-healing and healing chronic leg ulcers. Wound Repair Regen. 2000 Jan-Feb;8(1):13-25. doi: 10.1046/j.1524-475x.2000.00013.x.
Ladwig GP, Robson MC, Liu R, Kuhn MA, Muir DF, Schultz GS. Ratios of activated matrix metalloproteinase-9 to tissue inhibitor of matrix metalloproteinase-1 in wound fluids are inversely correlated with healing of pressure ulcers. Wound Repair Regen. 2002 Jan-Feb;10(1):26-37. doi: 10.1046/j.1524-475x.2002.10903.x.
Yager DR, Zhang LY, Liang HX, Diegelmann RF, Cohen IK. Wound fluids from human pressure ulcers contain elevated matrix metalloproteinase levels and activity compared to surgical wound fluids. J Invest Dermatol. 1996 Nov;107(5):743-8. doi: 10.1111/1523-1747.ep12365637.
Izadi K, Ganchi P. Chronic wounds. Clin Plast Surg. 2005 Apr;32(2):209-22. doi: 10.1016/j.cps.2004.11.011.
Argenta LC, Morykwas MJ. Vacuum-assisted closure: a new method for wound control and treatment: clinical experience. Ann Plast Surg. 1997 Jun;38(6):563-76; discussion 577.
James GA, Swogger E, Wolcott R, Pulcini Ed, Secor P, Sestrich J, Costerton JW, Stewart PS. Biofilms in chronic wounds. Wound Repair Regen. 2008 Jan-Feb;16(1):37-44. doi: 10.1111/j.1524-475X.2007.00321.x. Epub 2007 Dec 13.
Steenvoorde P, van Engeland A, Oskam J. Vacuum-assisted closure therapy and oral anticoagulation therapy. Plast Reconstr Surg. 2004 Jun;113(7):2220-1. doi: 10.1097/01.prs.0000123603.32963.11. No abstract available.
Morykwas MJ, Argenta LC, Shelton-Brown EI, McGuirt W. Vacuum-assisted closure: a new method for wound control and treatment: animal studies and basic foundation. Ann Plast Surg. 1997 Jun;38(6):553-62. doi: 10.1097/00000637-199706000-00001.
Huang C, Leavitt T, Bayer LR, Orgill DP. Effect of negative pressure wound therapy on wound healing. Curr Probl Surg. 2014 Jul;51(7):301-31. doi: 10.1067/j.cpsurg.2014.04.001. Epub 2014 Apr 26.
Nuutila K, Yang L, Broomhead M, Proppe K, Eriksson E. Novel negative pressure wound therapy device without foam or gauze is effective at -50 mmHg. Wound Repair Regen. 2019 Mar;27(2):162-169. doi: 10.1111/wrr.3. Epub 2018 Oct 31.
Isago T, Nozaki M, Kikuchi Y, Honda T, Nakazawa H. Effects of different negative pressures on reduction of wounds in negative pressure dressings. J Dermatol. 2003 Aug;30(8):596-601. doi: 10.1111/j.1346-8138.2003.tb00441.x.
Fleischmann W, Russ M, Westhauser A, Stampehl M. [Vacuum sealing as carrier system for controlled local drug administration in wound infection]. Unfallchirurg. 1998 Aug;101(8):649-54. doi: 10.1007/s001130050318. German.
Timmers MS, Graafland N, Bernards AT, Nelissen RG, van Dissel JT, Jukema GN. Negative pressure wound treatment with polyvinyl alcohol foam and polyhexanide antiseptic solution instillation in posttraumatic osteomyelitis. Wound Repair Regen. 2009 Mar-Apr;17(2):278-86. doi: 10.1111/j.1524-475X.2009.00458.x.
Blokhuis-Arkes MH, Haalboom M, van der Palen J, Heinzle A, Sigl E, Guebitz G, Beuk R. Rapid enzyme analysis as a diagnostic tool for wound infection: Comparison between clinical judgment, microbiological analysis, and enzyme analysis. Wound Repair Regen. 2015 May-Jun;23(3):345-52. doi: 10.1111/wrr.12282. Epub 2015 Jun 19.
Hasmann A, Wehrschuetz-Sigl E, Marold A, Wiesbauer H, Schoeftner R, Gewessler U, Kandelbauer A, Schiffer D, Schneider KP, Binder B, Schintler M, Guebitz GM. Analysis of myeloperoxidase activity in wound fluids as a marker of infection. Ann Clin Biochem. 2013 May;50(Pt 3):245-54. doi: 10.1258/acb.2011.010249.
Hasmann A, Gewessler U, Hulla E, Schneider KP, Binder B, Francesko A, Tzanov T, Schintler M, Van der Palen J, Guebitz GM, Wehrschuetz-Sigl E. Sensor materials for the detection of human neutrophil elastase and cathepsin G activity in wound fluid. Exp Dermatol. 2011 Jun;20(6):508-13. doi: 10.1111/j.1600-0625.2011.01256.x. Epub 2011 Apr 13.
Hasmann A, Wehrschuetz-Sigl E, Kanzler G, Gewessler U, Hulla E, Schneider KP, Binder B, Schintler M, Guebitz GM. Novel peptidoglycan-based diagnostic devices for detection of wound infection. Diagn Microbiol Infect Dis. 2011 Sep;71(1):12-23. doi: 10.1016/j.diagmicrobio.2010.09.009. Epub 2011 Mar 9.
Klebanoff SJ. Myeloperoxidase. Proc Assoc Am Physicians. 1999 Sep-Oct;111(5):383-9. doi: 10.1111/paa.1999.111.5.383.
Schiffer D, Blokhuis-Arkes M, van der Palen J, Sigl E, Heinzle A, Guebitz GM. Assessment of infection in chronic wounds based on the activities of elastase, lysozyme and myeloperoxidase. Br J Dermatol. 2015 Dec;173(6):1529-31. doi: 10.1111/bjd.13896. Epub 2015 Oct 29. No abstract available.
Heinzle A, Papen-Botterhuis NE, Schiffer D, Schneider KP, Binder B, Schintler M, Haaksman IK, Lenting HB, Gubitz GM, Sigl E. Novel protease-based diagnostic devices for detection of wound infection. Wound Repair Regen. 2013 May-Jun;21(3):482-9. doi: 10.1111/wrr.12040. Epub 2013 Apr 29.
Schiffer D, Tegl G, Heinzle A, Sigl E, Metcalf D, Bowler P, Burnet M, Guebitz GM. Enzyme-responsive polymers for microbial infection detection. Expert Rev Mol Diagn. 2015;15(9):1125-31. doi: 10.1586/14737159.2015.1061935. Epub 2015 Jul 16.
Tegl G, Schiffer D, Sigl E, Heinzle A, Guebitz GM. Biomarkers for infection: enzymes, microbes, and metabolites. Appl Microbiol Biotechnol. 2015 Jun;99(11):4595-614. doi: 10.1007/s00253-015-6637-7. Epub 2015 May 9.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
NPWW
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.