Surgical Approach in Fast Track Knee Arthroplasty

NCT ID: NCT04450485

Last Updated: 2020-06-29

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

54 participants

Study Classification

INTERVENTIONAL

Study Start Date

2018-05-01

Study Completion Date

2019-07-30

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Nowadays, due to the demands to improve life and health conditions of osteoarthritis patients, more effective surgical treatment methods are needed to obtain satisfactory results when performing total knee arthroplasty (TKA). Fast-track surgical protocols are evidence based multidisciplinary approaches targeted on multimodal patient care and primarily focused on enhancing rapid functional recovery of the patients. These protocols recommend use of minimal invasive approaches for TKA patients to enhance rapid recovery. Although studies in the literature has been reported similar results in medial para-patellar approach (MPP) and minimal invasive approaches in long terms, better surgical outcomes in short term in favor of minimal invasive approaches also encouraged fast-track protocol builders to prefer minimal invasive approaches. However, this recommendation is not evidence based and there is no study comparing surgical outcomes between minimal invasive approaches and MPP approach in terms of pain, length of hospital stays and functional recovery in fast-track TKA patients. Therefore, we aimed to compare the effects of mini mid-vastus (MMV) and MPP approaches on postoperative clinical results (pain, quality of life, functional outcome, and length of hospital stay) in fast-track TKA patients, and to decide whether any additional achievements are obtained with MMV approach in this patient group.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Nowadays, due to the demands to improve life and health conditions of OA patients, more effective surgical treatment methods are needed to obtain satisfactory results when performing total knee arthroplasty (TKA). Fast-track surgical protocols are evidence based multidisciplinary approaches targeted on multimodal patient care and primarily focused on enhancing rapid functional recovery of the patients. These protocols include patient education to cope with anxiety and stress of surgery, nutritional planning and avoidance of long hours of fasting, preemptive analgesia, avoidance of tourniquet use, rational antibiotic prophylaxis, local infiltration anesthesia, and early physical therapy modalities. The ultimate aims of assembling these surgical protocols are to decrease mortality and morbidity, length of hospital stay, and eventually hospital costs while obtaining maximum patient satisfaction.

Surgical approaches when performing TKA operations includes standard medial parapatellar (MPP) approach and minimal invasive approaches such as mini midvastus (MMV) and subvastus (SV) approaches. Possible advantages of not performing quadriceps tendon splitting in MV surgical approach (such as less pain, earlier functional recovery, enhanced quadriceps muscle strength, and better ROM) convinced surgeons to prefer minimal invasive approaches to MPP approach when performing rapid recovery protocols in TKA patients. In addition, better surgical outcomes with traditional protocols in short term reports in favor of minimal invasive approaches also encouraged fast-track protocol builders to prefer minimal invasive approaches. However, these recommendations are not evidence based and, to our knowledge, there is no study comparing surgical outcomes between minimal invasive approaches and MPP approach in terms of pain, length of hospital stay and functional recovery in fast-track TKA patients. Therefore, we aimed to compare the effects of MMV and MPP approaches on postoperative clinical results (pain, quality of life, functional outcome, and length of hospital stay) in fast-track TKA patients, and to decide whether any additional achievements are obtained with MMV approach in this patient group. Our secondary outcome measures were length of operation time, blood loss and postoperative component alignments.

Clinical and demographic variables of the participants were recorded and patients were evaluated preoperatively, at postoperative fourth and twelfth week by a blinded observer. Knee range of motion was assessed with digital goniometer (HALO Medical Devices, Australia); quadriceps muscle strength was measured (unit=newton(N)) with hand-held dynamometer (Commander Muscle Tester, J Tech, USA); The Western Ontario and McMaster Universities Arthritis Index (WOMAC) and Knee injury and Osteoarthritis Outcome Score (KOOS) was used to determine patient-reported activity limitations; 30-sec chair-stand test and stair-climb test were performed for performance-based activity limitations; Short Form-36 (SF-36) was used for quality of life evaluations.

Alignment analysis Long leg radiographs of the patients were evaluated preoperatively and postoperatively by using a digital orthopedic templating software-Materialise OrthoView (OrthoView version 7, Materialise HQ, Technologielaan 15 3001 Leuven, Belgium). Hip-knee-ankle angles (HKA), femorotibial angles, lateral proximal femoral angles (LPFA), lateral distal femoral angles (LDFA), medial proximal tibial angles (MPTA), lateral distal tibial angles (LDTA), tibial posterior slope angles were all measured and recorded by a blinded observer.

Preoperative patient education classes All the patients were received preoperative informative classes about TKA procedure, nutritional and nursing support, physical therapy and rehabilitation applications. Booklets concerning all these classes were also handed out to all patients.

Anesthesia Protocol Excluding diabetics, all the patients were received oral carbohydrate (%12.5 carbohydrate liquid solution-Fantomalt, Nutricia) loading on the night before the operation (between 19:00 and 23:00) and 2 hours before the operation. Solid foods were allowed up to 6 hours before the operation and liquids allowed up to 2 hours preoperatively. Early oral feeding was started at 4 to 6 hours postoperatively for all patients. Intravenous midazolam 1-2 mg and fentanyl 50-100 μg were applied to all patients 30-45 minutes preoperatively. Except 12 patients, all patients received spinal anesthesia. Seven patients due to previous lumber fusion and 5 patients due to personal preference were received general anesthesia.

Surgical Technique All the operations were performed by the same surgeon using the same brand and type of prosthesis. MPP and MMV approaches were performed as described in the literature. All the patients received posterior stabilized fixed bearing TKA (NexGen Legacy® Posterior Stabilized Knee-Fixed Bearing, Zimmer-Biomet Inc., Warsaw, Indiana 46580, ABD), and high viscosity polymethyl methacrylate (PMMA) bone cement (Oliga-G21 srl-Vias. Pertini, 8-41039 San Posidonia (MO)-Italy). All the operations were performed without using tourniquet.

Local infiltration anesthesia (LIA) (20 cc bupivacaine hydrochloride, 1 gr fentanyl, 1 gr cefazolin sodium, 0.3 ml epinephrine, and dilute volume of physiologic serum (%0,9 NaCl) to 50 cc) to posterior capsule just before the application of permanent implants, and to anterior capsule, prepatellar fat pad and peri ligamentous nociceptive receptors following consolidation of bone cement was injected.

One gram of tranexamic acid was injected intravenously (iv) at least 30 minutes before the incision, 1 gr diluted to 30 cc by physiologic serum (%0,9 NaCl) was given intraarticularly following the closure of the wound, and another 1 gr was infused 2 hours after the operation.

Preoperative and postoperative analgesia protocol For preemptive analgesia, paracetamol 500 mg tablets were prescribed 3 times 2 tablets per day beginning from 3 days before the operation. One gram of iv infusion of paracetamol was given just after the operation in postoperative care unit and continued as 3 times 1gr iv infusion. First line rescue analgesic was intramuscular 75 mg diclofenac sodium and second line analgesic was iv 100 mg tramadol hydrochloride.

Antibiotic and thrombosis prophylaxis protocol One gr of cefazolin sodium iv was applied 30 minutes before the incision as antibiotic prophylaxis. Low molecular weight heparin-enoxaparin sodium 4000 iu/0.8 ml/day was used subcutaneously as thromboembolic prophylaxis starting at the 6-8 hours postoperatively and continued for 20 days.

Rehabilitation protocol and discharge criteria The patients were mobilized at the 4th hour following surgery and standard physiotherapy program was scheduled during hospitalization (cold-pack -once in every 2 hours for 15 minutes, ankle pump exercises, quadriceps isometric exercises, active assisted heel slide exercises in bed and knee flexion exercises in sitting position/3 sets×10 repeats). The patients were evaluated regularly every two hours during postoperative period and those fulfilling discharge criteria were released from the hospital and length of hospital stay was recorded for every patient. The standard discharge criteria were as follows: VAS score at rest \<3, VAS score during mobilization \<5, able to get dressed independently, able to get in and out of bed, able to sit and rise from a chair/toilet seat, independence in personal care, mobilization with walker/crutches, able to walk \>70 meters without risk of fall with walking aid, no incision problem.

The discharged patients were instructed for a standard home-based exercise program. Patients were also asked to visit the ward at a biweekly interval for the update of the exercise program for the first 8 weeks. 15-40 minutes of walking exercises were also prescribed for 5 days/week between 9th and 12th weeks.

Statistical analysis Priori power analysis concerning quadriceps muscle strength showed that at an effect size of d=0.7, 52 patients are needed (26 patients for each group) to obtain 80 % power (1-beta=0.80) with 95 % confidence interval (alpha=0.05).

The data was analyzed using SPSS 24.0 (IBM Corp. Released 2016. IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp.) package program. Continuous variables were given as mean ± standard deviation, median (minimum and maximum) and categorical variable values were presented as absolute numbers and percentages. The conformity of continuous variables with normal distribution was evaluated using the Shapiro-Wilk test. Independent Samples t-test for parametric test assumptions and Mann-Whitney U Test for non-parametric test assumptions were used for comparison of the groups. One-way repeated-measure ANOVA was used to compare the normally distributed data from the parameters repeatedly measured in the inner-group analysis, and Friedman analysis of variance was performed for the remaining data set. Statistical significance was set at p ≤ 0.05.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Knee Arthroplasty, Total

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Patients planned for fast track protocol applied total knee arthroplasty randomized into two groups by a computer program to generate random numbers and assign participants to either to mini mid-vastus or medial para-patellar surgical approach group
Primary Study Purpose

TREATMENT

Blinding Strategy

DOUBLE

Participants Outcome Assessors
Patients and outcomes assessor are blinded to the type of surgical approach.

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Medial para-patellar approach

Fast track protocol applied total knee arthroplasty patients operated by using medial para-patellar approach

Group Type ACTIVE_COMPARATOR

Total knee arthroplasty

Intervention Type PROCEDURE

Total knee arthroplasty

Mini mid-vastus approach

Fast track protocol applied total knee arthroplasty patients operated by using mini mid-vastus approach

Group Type ACTIVE_COMPARATOR

Total knee arthroplasty

Intervention Type PROCEDURE

Total knee arthroplasty

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Total knee arthroplasty

Total knee arthroplasty

Intervention Type PROCEDURE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Patients scheduled for unilateral TKA surgery due to primary OA
* Patients capable of understanding verbal and written instructions.

Exclusion Criteria

* Revision TKA surgery
* ASA score \>3
* previous major orthopedic surgery in either lower extremities
* neurologic compromise
* psychiatric problems
* regular hypnotic and/or anxiolytic medication usage
* dementia
* patients participated in a particular physical activity program within the last 3 months.
Minimum Eligible Age

50 Years

Maximum Eligible Age

85 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Pamukkale University

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Harun Resit Gungor

MD, Associated Professor

Responsibility Role PRINCIPAL_INVESTIGATOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Harun R Gungor, MD

Role: PRINCIPAL_INVESTIGATOR

Pamukkale University

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Pamukkale University Medical Faculty

Denizli, , Turkey (Türkiye)

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Turkey (Türkiye)

References

Explore related publications, articles, or registry entries linked to this study.

Husted H. Fast-track hip and knee arthroplasty: clinical and organizational aspects. Acta Orthop Suppl. 2012 Oct;83(346):1-39. doi: 10.3109/17453674.2012.700593.

Reference Type BACKGROUND
PMID: 23205862 (View on PubMed)

Stowers MD, Manuopangai L, Hill AG, Gray JR, Coleman B, Munro JT. Enhanced Recovery After Surgery in elective hip and knee arthroplasty reduces length of hospital stay. ANZ J Surg. 2016 Jun;86(6):475-9. doi: 10.1111/ans.13538. Epub 2016 Mar 28.

Reference Type BACKGROUND
PMID: 27018137 (View on PubMed)

Heekin RD, Fokin AA. Mini-midvastus versus mini-medial parapatellar approach for minimally invasive total knee arthroplasty: outcomes pendulum is at equilibrium. J Arthroplasty. 2014 Feb;29(2):339-42. doi: 10.1016/j.arth.2013.05.016. Epub 2013 Jun 19.

Reference Type BACKGROUND
PMID: 23790343 (View on PubMed)

Karpman RR, Smith HL. Comparison of the early results of minimally invasive vs standard approaches to total knee arthroplasty: a prospective, randomized study. J Arthroplasty. 2009 Aug;24(5):681-8. doi: 10.1016/j.arth.2008.03.011. Epub 2008 Jun 6.

Reference Type BACKGROUND
PMID: 18538536 (View on PubMed)

Chin PL, Foo LS, Yang KY, Yeo SJ, Lo NN. Randomized controlled trial comparing the radiologic outcomes of conventional and minimally invasive techniques for total knee arthroplasty. J Arthroplasty. 2007 Sep;22(6):800-6. doi: 10.1016/j.arth.2006.10.009. Epub 2007 Apr 20.

Reference Type BACKGROUND
PMID: 17826268 (View on PubMed)

Dalury DF, Jiranek WA. A comparison of the midvastus and paramedian approaches for total knee arthroplasty. J Arthroplasty. 1999 Jan;14(1):33-7. doi: 10.1016/s0883-5403(99)90199-7.

Reference Type BACKGROUND
PMID: 9926950 (View on PubMed)

White RE Jr, Allman JK, Trauger JA, Dales BH. Clinical comparison of the midvastus and medial parapatellar surgical approaches. Clin Orthop Relat Res. 1999 Oct;(367):117-22.

Reference Type BACKGROUND
PMID: 10546605 (View on PubMed)

Stevens-Lapsley JE, Bade MJ, Shulman BC, Kohrt WM, Dayton MR. Minimally invasive total knee arthroplasty improves early knee strength but not functional performance: a randomized controlled trial. J Arthroplasty. 2012 Dec;27(10):1812-1819.e2. doi: 10.1016/j.arth.2012.02.016. Epub 2012 Mar 28.

Reference Type BACKGROUND
PMID: 22459124 (View on PubMed)

Lin WP, Lin J, Horng LC, Chang SM, Jiang CC. Quadriceps-sparing, minimal-incision total knee arthroplasty: a comparative study. J Arthroplasty. 2009 Oct;24(7):1024-32. doi: 10.1016/j.arth.2008.07.005. Epub 2008 Aug 30.

Reference Type BACKGROUND
PMID: 18757172 (View on PubMed)

Nestor BJ, Toulson CE, Backus SI, Lyman SL, Foote KL, Windsor RE. Mini-midvastus vs standard medial parapatellar approach: a prospective, randomized, double-blinded study in patients undergoing bilateral total knee arthroplasty. J Arthroplasty. 2010 Sep;25(6 Suppl):5-11, 11.e1. doi: 10.1016/j.arth.2010.04.003. Epub 2010 Jun 11.

Reference Type BACKGROUND
PMID: 20541889 (View on PubMed)

Kazarian GS, Siow MY, Chen AF, Deirmengian CA. Comparison of Quadriceps-Sparing and Medial Parapatellar Approaches in Total Knee Arthroplasty: A Meta-Analysis of Randomized Controlled Trials. J Arthroplasty. 2018 Jan;33(1):277-283. doi: 10.1016/j.arth.2017.08.025. Epub 2017 Aug 30.

Reference Type BACKGROUND
PMID: 28947369 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

2018TIPF017

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.