Study Assessing Vagus Nerve Stimulation in CoViD-19 Respiratory Symptoms

NCT ID: NCT04368156

Last Updated: 2022-01-31

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Clinical Phase

NA

Total Enrollment

110 participants

Study Classification

INTERVENTIONAL

Study Start Date

2020-04-20

Study Completion Date

2021-02-17

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The purpose of this study is to asses the efficacy of the Gammacore device reducing the need for mechanical ventilation in patients diagnosed of Covid-19

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Covid-19

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

TREATMENT

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

Control

Group Type NO_INTERVENTION

No interventions assigned to this group

Gammacore treatment

Group Type EXPERIMENTAL

gammaCore® (Vagus nerve stimulation)

Intervention Type DEVICE

Vagus nerve stimulation using the gammacore neurostimulation device

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

gammaCore® (Vagus nerve stimulation)

Vagus nerve stimulation using the gammacore neurostimulation device

Intervention Type DEVICE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

1. Has been tested positive or suspected/presumed positive for CoViD-19
2. Patients with cough, shortness of breath or respiratory compromise (RR\>24/min, increased work of breathing.)
3. O2 Saturation less than or equal to 96% on room air or sensation
4. Agrees to use the gammaCore®-Sapphire device as intended and to follow all of the requirements of the study including recording required study data
5. Patient is able to provide signed and witnessed Informed Consent

Exclusion Criteria

1. On home/therapy oxygen (i.e. for COPD patients) at baseline prior to development of CoViD-19
2. Is already enrolled in a clinical trial using immunotherapeutic regimen for CoViD-19
3. Already gammaCore for other medical conditions
4. A history of aneurysm, intracranial hemorrhage, brain tumors, or significant head trauma
5. Known or suspected severe atherosclerotic cardiovascular disease, severe carotid artery disease (eg, bruits or history of transient ischemic attack or cerebrovascular accident), congestive heart failure, known severe coronary artery disease, or recent myocardial infarction
6. Uncontrolled high blood pressure (\>140/90)
7. Current implantation of an electrical and/or neurostimulator device, including but not limited to a cardiac pacemaker or defibrillator, vagal neurostimulator, deep brain stimulator, spinal stimulator, bone growth stimulator, or cochlear implant
8. Current implantation of metal cervical spine hardware or a metallic implant near the gammaCore stimulation site
9. Belongs to a vulnerable population or has any condition such that his or her ability to provide informed consent, comply with the follow-up requirements, or provide self-assessments is compromised (e.g. homeless, developmentally disabled and prisoner)
10. Compromised access to peripheral veinous for blood)
11. Pregnant women
Minimum Eligible Age

18 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

Carlos Tornero

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Carlos Tornero

Doctor

Responsibility Role SPONSOR_INVESTIGATOR

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Hospital Clínico Universitario de Valencia

Valencia, , Spain

Site Status

Countries

Review the countries where the study has at least one active or historical site.

Spain

References

Explore related publications, articles, or registry entries linked to this study.

1 Staats, P., et al. (2018). In E.Krames, et. al (Eds.) Neuromodulation : Comprehensive Textbook of Principles, Technologies, and Therapies Vol 1: Neurostiumulation for Asthma (2nd Edition, pp. 1339-1345). London, United Kingdom: Academic Press, Elsevier.

Reference Type BACKGROUND

Miner JR, Lewis LM, Mosnaim GS, Varon J, Theodoro D, Hoffmann TJ. Feasibility of percutaneous vagus nerve stimulation for the treatment of acute asthma exacerbations. Acad Emerg Med. 2012 Apr;19(4):421-9. doi: 10.1111/j.1553-2712.2012.01329.x.

Reference Type BACKGROUND
PMID: 22506946 (View on PubMed)

Pavlov VA, Chavan SS, Tracey KJ. Bioelectronic Medicine: From Preclinical Studies on the Inflammatory Reflex to New Approaches in Disease Diagnosis and Treatment. Cold Spring Harb Perspect Med. 2020 Mar 2;10(3):a034140. doi: 10.1101/cshperspect.a034140.

Reference Type BACKGROUND
PMID: 31138538 (View on PubMed)

Hoffmann TJ, Mendez S, Staats P, Emala CW, Guo P. Inhibition of histamine-induced bronchoconstriction in Guinea pig and Swine by pulsed electrical vagus nerve stimulation. Neuromodulation. 2009 Oct;12(4):261-9. doi: 10.1111/j.1525-1403.2009.00234.x. Epub 2009 Aug 20.

Reference Type BACKGROUND
PMID: 22151415 (View on PubMed)

Koopman FA, Chavan SS, Miljko S, Grazio S, Sokolovic S, Schuurman PR, Mehta AD, Levine YA, Faltys M, Zitnik R, Tracey KJ, Tak PP. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):8284-9. doi: 10.1073/pnas.1605635113. Epub 2016 Jul 5.

Reference Type BACKGROUND
PMID: 27382171 (View on PubMed)

Brock C, Brock B, Aziz Q, Moller HJ, Pfeiffer Jensen M, Drewes AM, Farmer AD. Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha. Neurogastroenterol Motil. 2017 May;29(5). doi: 10.1111/nmo.12999. Epub 2016 Dec 12.

Reference Type BACKGROUND
PMID: 27957782 (View on PubMed)

Tarn J, Legg S, Mitchell S, Simon B, Ng WF. The Effects of Noninvasive Vagus Nerve Stimulation on Fatigue and Immune Responses in Patients With Primary Sjogren's Syndrome. Neuromodulation. 2019 Jul;22(5):580-585. doi: 10.1111/ner.12879. Epub 2018 Oct 17.

Reference Type BACKGROUND
PMID: 30328647 (View on PubMed)

Lerman I, Hauger R, Sorkin L, Proudfoot J, Davis B, Huang A, Lam K, Simon B, Baker DG. Noninvasive Transcutaneous Vagus Nerve Stimulation Decreases Whole Blood Culture-Derived Cytokines and Chemokines: A Randomized, Blinded, Healthy Control Pilot Trial. Neuromodulation. 2016 Apr;19(3):283-90. doi: 10.1111/ner.12398. Epub 2016 Mar 15.

Reference Type BACKGROUND
PMID: 26990318 (View on PubMed)

Huston JM, Gallowitsch-Puerta M, Ochani M, Ochani K, Yuan R, Rosas-Ballina M, Ashok M, Goldstein RS, Chavan S, Pavlov VA, Metz CN, Yang H, Czura CJ, Wang H, Tracey KJ. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit Care Med. 2007 Dec;35(12):2762-8. doi: 10.1097/01.CCM.0000288102.15975.BA.

Reference Type BACKGROUND
PMID: 17901837 (View on PubMed)

Haveri A, Smura T, Kuivanen S, Osterlund P, Hepojoki J, Ikonen N, Pitkapaasi M, Blomqvist S, Ronkko E, Kantele A, Strandin T, Kallio-Kokko H, Mannonen L, Lappalainen M, Broas M, Jiang M, Siira L, Salminen M, Puumalainen T, Sane J, Melin M, Vapalahti O, Savolainen-Kopra C. Serological and molecular findings during SARS-CoV-2 infection: the first case study in Finland, January to February 2020. Euro Surveill. 2020 Mar;25(11):2000266. doi: 10.2807/1560-7917.ES.2020.25.11.2000266.

Reference Type BACKGROUND
PMID: 32209163 (View on PubMed)

Conti P, Ronconi G, Caraffa A, Gallenga CE, Ross R, Frydas I, Kritas SK. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents. 2020 March-April,;34(2):327-331. doi: 10.23812/CONTI-E.

Reference Type BACKGROUND
PMID: 32171193 (View on PubMed)

Liu L, Wei Q, Lin Q, Fang J, Wang H, Kwok H, Tang H, Nishiura K, Peng J, Tan Z, Wu T, Cheung KW, Chan KH, Alvarez X, Qin C, Lackner A, Perlman S, Yuen KY, Chen Z. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight. 2019 Feb 21;4(4):e123158. doi: 10.1172/jci.insight.123158. eCollection 2019 Feb 21.

Reference Type BACKGROUND
PMID: 30830861 (View on PubMed)

Chen IY, Moriyama M, Chang MF, Ichinohe T. Severe Acute Respiratory Syndrome Coronavirus Viroporin 3a Activates the NLRP3 Inflammasome. Front Microbiol. 2019 Jan 29;10:50. doi: 10.3389/fmicb.2019.00050. eCollection 2019.

Reference Type BACKGROUND
PMID: 30761102 (View on PubMed)

Gralinski LE, Sheahan TP, Morrison TE, Menachery VD, Jensen K, Leist SR, Whitmore A, Heise MT, Baric RS. Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis. mBio. 2018 Oct 9;9(5):e01753-18. doi: 10.1128/mBio.01753-18.

Reference Type BACKGROUND
PMID: 30301856 (View on PubMed)

McDermott JE, Mitchell HD, Gralinski LE, Eisfeld AJ, Josset L, Bankhead A 3rd, Neumann G, Tilton SC, Schafer A, Li C, Fan S, McWeeney S, Baric RS, Katze MG, Waters KM. The effect of inhibition of PP1 and TNFalpha signaling on pathogenesis of SARS coronavirus. BMC Syst Biol. 2016 Sep 23;10(1):93. doi: 10.1186/s12918-016-0336-6.

Reference Type BACKGROUND
PMID: 27663205 (View on PubMed)

Newton AH, Cardani A, Braciale TJ. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology. Semin Immunopathol. 2016 Jul;38(4):471-82. doi: 10.1007/s00281-016-0558-0. Epub 2016 Mar 10.

Reference Type BACKGROUND
PMID: 26965109 (View on PubMed)

Gralinski LE, Ferris MT, Aylor DL, Whitmore AC, Green R, Frieman MB, Deming D, Menachery VD, Miller DR, Buus RJ, Bell TA, Churchill GA, Threadgill DW, Katze MG, McMillan L, Valdar W, Heise MT, Pardo-Manuel de Villena F, Baric RS. Genome Wide Identification of SARS-CoV Susceptibility Loci Using the Collaborative Cross. PLoS Genet. 2015 Oct 9;11(10):e1005504. doi: 10.1371/journal.pgen.1005504. eCollection 2015 Oct.

Reference Type BACKGROUND
PMID: 26452100 (View on PubMed)

Selinger C, Tisoncik-Go J, Menachery VD, Agnihothram S, Law GL, Chang J, Kelly SM, Sova P, Baric RS, Katze MG. Cytokine systems approach demonstrates differences in innate and pro-inflammatory host responses between genetically distinct MERS-CoV isolates. BMC Genomics. 2014 Dec 22;15(1):1161. doi: 10.1186/1471-2164-15-1161.

Reference Type BACKGROUND
PMID: 25534508 (View on PubMed)

Burrack KS, Morrison TE. The role of myeloid cell activation and arginine metabolism in the pathogenesis of virus-induced diseases. Front Immunol. 2014 Sep 8;5:428. doi: 10.3389/fimmu.2014.00428. eCollection 2014.

Reference Type BACKGROUND
PMID: 25250029 (View on PubMed)

van den Brand JM, Haagmans BL, van Riel D, Osterhaus AD, Kuiken T. The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J Comp Pathol. 2014 Jul;151(1):83-112. doi: 10.1016/j.jcpa.2014.01.004. Epub 2014 Jan 15.

Reference Type BACKGROUND
PMID: 24581932 (View on PubMed)

DeDiego ML, Nieto-Torres JL, Regla-Nava JA, Jimenez-Guardeno JM, Fernandez-Delgado R, Fett C, Castano-Rodriguez C, Perlman S, Enjuanes L. Inhibition of NF-kappaB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. J Virol. 2014 Jan;88(2):913-24. doi: 10.1128/JVI.02576-13. Epub 2013 Nov 6.

Reference Type BACKGROUND
PMID: 24198408 (View on PubMed)

Smits SL, de Lang A, van den Brand JM, Leijten LM, van IJcken WF, Eijkemans MJ, van Amerongen G, Kuiken T, Andeweg AC, Osterhaus AD, Haagmans BL. Exacerbated innate host response to SARS-CoV in aged non-human primates. PLoS Pathog. 2010 Feb 5;6(2):e1000756. doi: 10.1371/journal.ppat.1000756.

Reference Type BACKGROUND
PMID: 20140198 (View on PubMed)

Kong SL, Chui P, Lim B, Salto-Tellez M. Elucidating the molecular physiopathology of acute respiratory distress syndrome in severe acute respiratory syndrome patients. Virus Res. 2009 Nov;145(2):260-9. doi: 10.1016/j.virusres.2009.07.014. Epub 2009 Jul 25.

Reference Type BACKGROUND
PMID: 19635508 (View on PubMed)

Wan J, Sun W, Li X, Ying W, Dai J, Kuai X, Wei H, Gao X, Zhu Y, Jiang Y, Qian X, He F. Inflammation inhibitors were remarkably up-regulated in plasma of severe acute respiratory syndrome patients at progressive phase. Proteomics. 2006 May;6(9):2886-94. doi: 10.1002/pmic.200500638.

Reference Type BACKGROUND
PMID: 16649161 (View on PubMed)

Okabayashi T, Kariwa H, Yokota S, Iki S, Indoh T, Yokosawa N, Takashima I, Tsutsumi H, Fujii N. Cytokine regulation in SARS coronavirus infection compared to other respiratory virus infections. J Med Virol. 2006 Apr;78(4):417-24. doi: 10.1002/jmv.20556.

Reference Type BACKGROUND
PMID: 16482545 (View on PubMed)

Yu SY, Hu YW, Liu XY, Xiong W, Zhou ZT, Yuan ZH. Gene expression profiles in peripheral blood mononuclear cells of SARS patients. World J Gastroenterol. 2005 Aug 28;11(32):5037-43. doi: 10.3748/wjg.v11.i32.5037.

Reference Type BACKGROUND
PMID: 16124062 (View on PubMed)

Yang YH, Huang YH, Chuang YH, Peng CM, Wang LC, Lin YT, Chiang BL. Autoantibodies against human epithelial cells and endothelial cells after severe acute respiratory syndrome (SARS)-associated coronavirus infection. J Med Virol. 2005 Sep;77(1):1-7. doi: 10.1002/jmv.20407.

Reference Type BACKGROUND
PMID: 16032747 (View on PubMed)

Wang CH, Liu CY, Wan YL, Chou CL, Huang KH, Lin HC, Lin SM, Lin TY, Chung KF, Kuo HP. Persistence of lung inflammation and lung cytokines with high-resolution CT abnormalities during recovery from SARS. Respir Res. 2005 May 11;6(1):42. doi: 10.1186/1465-9921-6-42.

Reference Type BACKGROUND
PMID: 15888207 (View on PubMed)

Steyn E, Mohamed Z, Husselman C. Non-invasive vagus nerve stimulation for the treatment of acute asthma exacerbations-results from an initial case series. Int J Emerg Med. 2013 Mar 19;6(1):7. doi: 10.1186/1865-1380-6-7.

Reference Type BACKGROUND
PMID: 23510361 (View on PubMed)

Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012 Mar;76(1):16-32. doi: 10.1128/MMBR.05015-11.

Reference Type BACKGROUND
PMID: 22390970 (View on PubMed)

Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020 May;46(5):846-848. doi: 10.1007/s00134-020-05991-x. Epub 2020 Mar 3. No abstract available.

Reference Type BACKGROUND
PMID: 32125452 (View on PubMed)

Mourdoukoutas AP, Truong DQ, Adair DK, Simon BJ, Bikson M. High-Resolution Multi-Scale Computational Model for Non-Invasive Cervical Vagus Nerve Stimulation. Neuromodulation. 2018 Apr;21(3):261-268. doi: 10.1111/ner.12706. Epub 2017 Oct 27.

Reference Type BACKGROUND
PMID: 29076212 (View on PubMed)

Henssen DJHA, Derks B, van Doorn M, Verhoogt N, Van Cappellen van Walsum AM, Staats P, Vissers K. Vagus nerve stimulation for primary headache disorders: An anatomical review to explain a clinical phenomenon. Cephalalgia. 2019 Aug;39(9):1180-1194. doi: 10.1177/0333102419833076. Epub 2019 Feb 20.

Reference Type BACKGROUND
PMID: 30786731 (View on PubMed)

Fornai F, Ruffoli R, Giorgi FS, Paparelli A. The role of locus coeruleus in the antiepileptic activity induced by vagus nerve stimulation. Eur J Neurosci. 2011 Jun;33(12):2169-78. doi: 10.1111/j.1460-9568.2011.07707.x. Epub 2011 May 3.

Reference Type BACKGROUND
PMID: 21535457 (View on PubMed)

Tornero C, Pastor E, Garzando MDM, Orduna J, Forner MJ, Bocigas I, Cedeno DL, Vallejo R, McClure CK, Czura CJ, Liebler EJ, Staats P. Non-invasive Vagus Nerve Stimulation for COVID-19: Results From a Randomized Controlled Trial (SAVIOR I). Front Neurol. 2022 Apr 8;13:820864. doi: 10.3389/fneur.2022.820864. eCollection 2022.

Reference Type DERIVED
PMID: 35463130 (View on PubMed)

Tornero C, Vallejo R, Cedeno D, Orduna J, Pastor E, Belaouchi M, Escamilla B, Laredo M, Del Mar Garzando M. A prospective, randomized, controlled study assessing vagus nerve stimulation using the gammaCore(R)-Sapphire device for patients with moderate to severe CoViD-19 Respiratory Symptoms (SAVIOR): A structured summary of a study protocol for a randomised controlled trial". Trials. 2020 Jun 26;21(1):576. doi: 10.1186/s13063-020-04486-w.

Reference Type DERIVED
PMID: 32586395 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

SAVIOR

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Vagal Approaches on Long COVID-19
NCT07190105 COMPLETED NA
VNS for Long-COVID-19
NCT05630040 COMPLETED NA