Models of Auditory Hallucination

NCT ID: NCT04210557

Last Updated: 2024-08-01

Study Results

Results available

Outcome measurements, participant flow, baseline characteristics, and adverse events have been published for this study.

View full results

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

TERMINATED

Clinical Phase

NA

Total Enrollment

1 participants

Study Classification

INTERVENTIONAL

Study Start Date

2020-02-27

Study Completion Date

2021-04-01

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The purpose of this study is to address the shortcoming in clinical hallucination research by causally manipulating the neural loci of conditioned hallucination task behavior in-person in patients with psychosis using transcranial magnetic stimulation (TMS), tracking the impact of this manipulation on the number of times participants with hallucinations report hearing tones that were not presented. With such a causal intervention, the veracity of this explanation of hallucinations will be either validated or disconfirmed. If validated, the task can be further developed as a biomarker for predicting the hallucination onset, guiding, developing or tracking the effects of treatments for hallucinations.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Hallucinations are percepts without stimulus. 70% of patients with schizophrenia suffer distressing auditory hallucinations. Their mere presence increases the risk of suicide. Most reach remission with D2 dopamine receptor blocking drugs after 1 year of adherence. However, 30% of patients have intractable hallucinations, and 50% are non-adherent to their medications, commonly because of unfavorable side-effects - those intractable and non-adherent patients continue to suffer. There is a clear need for a mechanistic understanding of hallucinations as a prelude to rational treatment design.

This study provides the initial steps towards the development of an interventional biomarker for clinical hallucinations, grounded in computational neuroscience.

Computational psychiatry involves harnessing the power of computational neuroscience to address the clinical needs of those suffering from serious mental illnesses. There has been much discussion of the promise of the approach. There have been few studies thus far and they have largely involved correlative methods like functional neuroimaging. This study will address this shortcoming by causally manipulating the neural loci of computational model parameters in-person in patients with psychosis using transcranial magnetic stimulation (TMS), tracking the impact of this manipulation on behavioral task performance . With such a causal intervention, the veracity of the model's explanation of hallucinations will be either validated or disconfirmed. If validated, the model can be further developed as a biomarker for predicting the hallucination onset, guiding, developing or tracking the effects of treatments for hallucinations. If disconfirmed, the model ought to be discarded and other alternatives should be pursued.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Schizophrenia Schizo Affective Disorder Auditory Hallucination

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

RANDOMIZED

Intervention Model

PARALLEL

Primary Study Purpose

BASIC_SCIENCE

Blinding Strategy

DOUBLE

Participants Investigators
The participant, the physician administering TMS, and the research psychologist will be blind to the condition. One research assistant will be unblinded to the condition. This unblinded research assistant is responsible for setting up the active TMS coils or the sham TMS coils and determining the protocol used, to maintain the blindness of other study staff and the participant.

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

TMS to insula

This study will recruit 30 clinical voice hearers (P+H+). They will complete two parallel forms of the conditioned hallucinations task (with different visual and auditory stimuli) on two occasions, separated by a week.

TMS and sham will be delivered in a randomized counterbalanced order. Hypothesis: Inhibiting the insula will decrease prior over-weighting. If this computational perturbation is responsible for conditioned hallucinations, then ameliorating it with TMS that increases insula engagement will decrease conditioned hallucination responses. Furthermore, the prior weighting parameter will be reduced following active TMS compared with sham.

Group Type ACTIVE_COMPARATOR

Transcranial Magnetic Stimulation (TMS)

Intervention Type DEVICE

Transcranial magnetic stimulation (TMS) is a noninvasive form of brain stimulation in which a changing magnetic field is used to cause electric current at a specific area of the brain through electromagnetic induction. An electric pulse generator, or stimulator, is connected to a magnetic coil, which in turn is connected to the scalp. The stimulator generates a changing electric current within the coil which induces a magnetic field; this field then causes a second inductance of inverted electric charge within the brain itself.

TMS to cerebellum

This study will recruit a further 70 clinical voice hearers. Again, they will complete parallel forms of the conditioned hallucinations task on two occasions, separated by a week. They will receive excitatory TMS over the cerebellum (and sham on the other occasion, in a randomized counterbalanced order). Hypotheses: Exciting the cerebellum will increase belief-updating. If poor belief-updating contributes to conditioned hallucinations, increasing cerebellum engagement should decrease conditioned hallucinations and alter the belief-updating model parameter compared with sham TMS.

Group Type ACTIVE_COMPARATOR

Transcranial Magnetic Stimulation (TMS)

Intervention Type DEVICE

Transcranial magnetic stimulation (TMS) is a noninvasive form of brain stimulation in which a changing magnetic field is used to cause electric current at a specific area of the brain through electromagnetic induction. An electric pulse generator, or stimulator, is connected to a magnetic coil, which in turn is connected to the scalp. The stimulator generates a changing electric current within the coil which induces a magnetic field; this field then causes a second inductance of inverted electric charge within the brain itself.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Transcranial Magnetic Stimulation (TMS)

Transcranial magnetic stimulation (TMS) is a noninvasive form of brain stimulation in which a changing magnetic field is used to cause electric current at a specific area of the brain through electromagnetic induction. An electric pulse generator, or stimulator, is connected to a magnetic coil, which in turn is connected to the scalp. The stimulator generates a changing electric current within the coil which induces a magnetic field; this field then causes a second inductance of inverted electric charge within the brain itself.

Intervention Type DEVICE

Other Intervention Names

Discover alternative or legacy names that may be used to describe the listed interventions across different sources.

repetitive transcranial magnetic stimulation (rTMS)

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Aged 18 - 45 years
* Voice hearing patients
* Meet diagnostic criteria for DSM-V schizophrenia or schizophreniform disorder
* Report hearing voices at least once a day
* Score \> 3 on PANSS P3 (hallucinations item)

Exclusion Criteria

* DSM-V substance use disorder within the past 6 months
* Previous head injury with neurological symptoms and/or unconsciousness
* Intellectual disability (IQ \< 70)
* Non-English speaker
* Contraindications for TMS, including:

* History of seizures
* Metallic implants
* Pacemaker
* Pregnancy
* Less than 6 weeks of a stable dose of psychotropic medication(s)
* Comorbid mood or anxiety diagnosis
* Clinically/behaviorally instability and unable to cooperate with TMS procedures
* Clinically significant medical condition(s)
* Unstable medical condition(s) based on EKG, medical history, physical examination, and routine lab work
* Personal history of stroke
* Family history of seizures
Minimum Eligible Age

18 Years

Maximum Eligible Age

45 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

National Institute of Mental Health (NIMH)

NIH

Sponsor Role collaborator

Yale University

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Philip R Corlett, PhD

Role: PRINCIPAL_INVESTIGATOR

Yale University

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Connecticut Mental Health Center (CMHC)

New Haven, Connecticut, United States

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United States

References

Explore related publications, articles, or registry entries linked to this study.

Pompili M, Amador XF, Girardi P, Harkavy-Friedman J, Harrow M, Kaplan K, Krausz M, Lester D, Meltzer HY, Modestin J, Montross LP, Mortensen PB, Munk-Jorgensen P, Nielsen J, Nordentoft M, Saarinen PI, Zisook S, Wilson ST, Tatarelli R. Suicide risk in schizophrenia: learning from the past to change the future. Ann Gen Psychiatry. 2007 Mar 16;6:10. doi: 10.1186/1744-859X-6-10.

Reference Type BACKGROUND
PMID: 17367524 (View on PubMed)

Kelleher I, Lynch F, Harley M, Molloy C, Roddy S, Fitzpatrick C, Cannon M. Psychotic symptoms in adolescence index risk for suicidal behavior: findings from 2 population-based case-control clinical interview studies. Arch Gen Psychiatry. 2012 Dec;69(12):1277-83. doi: 10.1001/archgenpsychiatry.2012.164.

Reference Type BACKGROUND
PMID: 23108974 (View on PubMed)

Harkavy-Friedman JM, Kimhy D, Nelson EA, Venarde DF, Malaspina D, Mann JJ. Suicide attempts in schizophrenia: the role of command auditory hallucinations for suicide. J Clin Psychiatry. 2003 Aug;64(8):871-4.

Reference Type BACKGROUND
PMID: 12927000 (View on PubMed)

Friston K. Hierarchical models in the brain. PLoS Comput Biol. 2008 Nov;4(11):e1000211. doi: 10.1371/journal.pcbi.1000211. Epub 2008 Nov 7.

Reference Type BACKGROUND
PMID: 18989391 (View on PubMed)

Friston K. The free-energy principle: a rough guide to the brain? Trends Cogn Sci. 2009 Jul;13(7):293-301. doi: 10.1016/j.tics.2009.04.005. Epub 2009 Jun 24.

Reference Type BACKGROUND
PMID: 19559644 (View on PubMed)

Powers AR, Mathys C, Corlett PR. Pavlovian conditioning-induced hallucinations result from overweighting of perceptual priors. Science. 2017 Aug 11;357(6351):596-600. doi: 10.1126/science.aan3458.

Reference Type BACKGROUND
PMID: 28798131 (View on PubMed)

Powers AR III, Kelley M, Corlett PR. Hallucinations as top-down effects on perception. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016 Sep;1(5):393-400. doi: 10.1016/j.bpsc.2016.04.003.

Reference Type BACKGROUND
PMID: 28626813 (View on PubMed)

Helmholtz, H., & Southall, J. P. C. (1924). Helmholtz's treatise on physiological optics. Rochester, N.Y.: Optical Society of America.

Reference Type BACKGROUND

Friston K. A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci. 2005 Apr 29;360(1456):815-36. doi: 10.1098/rstb.2005.1622.

Reference Type BACKGROUND
PMID: 15937014 (View on PubMed)

Rao RP, Ballard DH. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci. 1999 Jan;2(1):79-87. doi: 10.1038/4580.

Reference Type BACKGROUND
PMID: 10195184 (View on PubMed)

Bayes T. An essay towards solving a problem in the doctrine of chances. 1763. MD Comput. 1991 May-Jun;8(3):157-71. No abstract available.

Reference Type BACKGROUND
PMID: 1857193 (View on PubMed)

Adams RA, Stephan KE, Brown HR, Frith CD, Friston KJ. The computational anatomy of psychosis. Front Psychiatry. 2013 May 30;4:47. doi: 10.3389/fpsyt.2013.00047. eCollection 2013.

Reference Type BACKGROUND
PMID: 23750138 (View on PubMed)

Friston, K. (2005). Hallucinations and perceptual inference. Behavioral and Brain Sciences, 28(6), 764-766. doi:10.1017/S0140525X05290131

Reference Type BACKGROUND

G. Ellson, D. (1941). Hallucinations produced by sensory conditioning. Journal of Experimental Psychology. 28. 1-20. 10.1037/h0054167.

Reference Type BACKGROUND

Mathys C, Daunizeau J, Friston KJ, Stephan KE. A bayesian foundation for individual learning under uncertainty. Front Hum Neurosci. 2011 May 2;5:39. doi: 10.3389/fnhum.2011.00039. eCollection 2011.

Reference Type BACKGROUND
PMID: 21629826 (View on PubMed)

Watson AB, Pelli DG. QUEST: a Bayesian adaptive psychometric method. Percept Psychophys. 1983 Feb;33(2):113-20. doi: 10.3758/bf03202828. No abstract available.

Reference Type BACKGROUND
PMID: 6844102 (View on PubMed)

Verdoux H, van Os J. Psychotic symptoms in non-clinical populations and the continuum of psychosis. Schizophr Res. 2002 Mar 1;54(1-2):59-65. doi: 10.1016/s0920-9964(01)00352-8.

Reference Type BACKGROUND
PMID: 11853979 (View on PubMed)

Powers AR 3rd, Kelley MS, Corlett PR. Varieties of Voice-Hearing: Psychics and the Psychosis Continuum. Schizophr Bull. 2017 Jan;43(1):84-98. doi: 10.1093/schbul/sbw133. Epub 2016 Oct 7.

Reference Type BACKGROUND
PMID: 28053132 (View on PubMed)

Zmigrod L, Garrison JR, Carr J, Simons JS. The neural mechanisms of hallucinations: A quantitative meta-analysis of neuroimaging studies. Neurosci Biobehav Rev. 2016 Oct;69:113-23. doi: 10.1016/j.neubiorev.2016.05.037. Epub 2016 Jul 26.

Reference Type BACKGROUND
PMID: 27473935 (View on PubMed)

Mathys CD, Lomakina EI, Daunizeau J, Iglesias S, Brodersen KH, Friston KJ, Stephan KE. Uncertainty in perception and the Hierarchical Gaussian Filter. Front Hum Neurosci. 2014 Nov 19;8:825. doi: 10.3389/fnhum.2014.00825. eCollection 2014.

Reference Type BACKGROUND
PMID: 25477800 (View on PubMed)

Guediche S, Holt LL, Laurent P, Lim SJ, Fiez JA. Evidence for Cerebellar Contributions to Adaptive Plasticity in Speech Perception. Cereb Cortex. 2015 Jul;25(7):1867-77. doi: 10.1093/cercor/bht428. Epub 2014 Jan 22.

Reference Type BACKGROUND
PMID: 24451660 (View on PubMed)

Shergill SS, White TP, Joyce DW, Bays PM, Wolpert DM, Frith CD. Functional magnetic resonance imaging of impaired sensory prediction in schizophrenia. JAMA Psychiatry. 2014 Jan;71(1):28-35. doi: 10.1001/jamapsychiatry.2013.2974.

Reference Type BACKGROUND
PMID: 24196370 (View on PubMed)

George MS. Stimulating the brain. Sci Am. 2003 Sep;289(3):66-73. doi: 10.1038/scientificamerican0903-66. No abstract available.

Reference Type BACKGROUND
PMID: 12951829 (View on PubMed)

Hoffman RE, Boutros NN, Berman RM, Roessler E, Belger A, Krystal JH, Charney DS. Transcranial magnetic stimulation of left temporoparietal cortex in three patients reporting hallucinated "voices". Biol Psychiatry. 1999 Jul 1;46(1):130-2. doi: 10.1016/s0006-3223(98)00358-8.

Reference Type BACKGROUND
PMID: 10394483 (View on PubMed)

Kring AM, Gur RE, Blanchard JJ, Horan WP, Reise SP. The Clinical Assessment Interview for Negative Symptoms (CAINS): final development and validation. Am J Psychiatry. 2013 Feb;170(2):165-72. doi: 10.1176/appi.ajp.2012.12010109.

Reference Type BACKGROUND
PMID: 23377637 (View on PubMed)

Borckardt JJ, Nahas Z, Koola J, George MS. Estimating resting motor thresholds in transcranial magnetic stimulation research and practice: a computer simulation evaluation of best methods. J ECT. 2006 Sep;22(3):169-75. doi: 10.1097/01.yct.0000235923.52741.72.

Reference Type BACKGROUND
PMID: 16957531 (View on PubMed)

Arana AB, Borckardt JJ, Ricci R, Anderson B, Li X, Linder KJ, Long J, Sackeim HA, George MS. Focal electrical stimulation as a sham control for repetitive transcranial magnetic stimulation: Does it truly mimic the cutaneous sensation and pain of active prefrontal repetitive transcranial magnetic stimulation? Brain Stimul. 2008 Jan;1(1):44-51. doi: 10.1016/j.brs.2007.08.006.

Reference Type BACKGROUND
PMID: 19424459 (View on PubMed)

Stromer R, McIlvane W.J, Serna R.W. Complex stimulus control and equivalence. The Psychological Record. 1993;43:585-598.

Reference Type BACKGROUND

Gekas N, Chalk M, Seitz AR, Series P. Complexity and specificity of experimentally-induced expectations in motion perception. J Vis. 2013 Mar 13;13(4):8. doi: 10.1167/13.4.8.

Reference Type BACKGROUND
PMID: 23487160 (View on PubMed)

Jones PD, Holding DH. Extremely long-term persistence of the McCollough effect. J Exp Psychol Hum Percept Perform. 1975 Nov;1(4):323-7. doi: 10.1037//0096-1523.1.4.323.

Reference Type BACKGROUND
PMID: 1185119 (View on PubMed)

Shams L, Seitz AR. Benefits of multisensory learning. Trends Cogn Sci. 2008 Nov;12(11):411-7. doi: 10.1016/j.tics.2008.07.006.

Reference Type BACKGROUND
PMID: 18805039 (View on PubMed)

Downar J, Blumberger DM, Daskalakis ZJ. The Neural Crossroads of Psychiatric Illness: An Emerging Target for Brain Stimulation. Trends Cogn Sci. 2016 Feb;20(2):107-120. doi: 10.1016/j.tics.2015.10.007. Epub 2015 Dec 3.

Reference Type BACKGROUND
PMID: 26655436 (View on PubMed)

Dinur-Klein L, Dannon P, Hadar A, Rosenberg O, Roth Y, Kotler M, Zangen A. Smoking cessation induced by deep repetitive transcranial magnetic stimulation of the prefrontal and insular cortices: a prospective, randomized controlled trial. Biol Psychiatry. 2014 Nov 1;76(9):742-9. doi: 10.1016/j.biopsych.2014.05.020. Epub 2014 Jun 5.

Reference Type BACKGROUND
PMID: 25038985 (View on PubMed)

Hardwick RM, Lesage E, Miall RC. Cerebellar transcranial magnetic stimulation: the role of coil geometry and tissue depth. Brain Stimul. 2014 Sep-Oct;7(5):643-9. doi: 10.1016/j.brs.2014.04.009. Epub 2014 May 6.

Reference Type BACKGROUND
PMID: 24924734 (View on PubMed)

Demirtas-Tatlidede A, Freitas C, Cromer JR, Safar L, Ongur D, Stone WS, Seidman LJ, Schmahmann JD, Pascual-Leone A. Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophr Res. 2010 Dec;124(1-3):91-100. doi: 10.1016/j.schres.2010.08.015.

Reference Type BACKGROUND
PMID: 20817483 (View on PubMed)

Oberman L, Edwards D, Eldaief M, Pascual-Leone A. Safety of theta burst transcranial magnetic stimulation: a systematic review of the literature. J Clin Neurophysiol. 2011 Feb;28(1):67-74. doi: 10.1097/WNP.0b013e318205135f.

Reference Type BACKGROUND
PMID: 21221011 (View on PubMed)

Rosner, B. Fundamentals of biostatistics. 1995. Duxbury Press: New York.

Reference Type BACKGROUND

Gulli G, Tarperi C, Cevese A, Acler M, Bongiovanni G, Manganotti P. Effects of prefrontal repetitive transcranial magnetic stimulation on the autonomic regulation of cardiovascular function. Exp Brain Res. 2013 Apr;226(2):265-71. doi: 10.1007/s00221-013-3431-6. Epub 2013 Mar 2.

Reference Type BACKGROUND
PMID: 23455721 (View on PubMed)

Kimhy D, Wall MM, Hansen MC, Vakhrusheva J, Choi CJ, Delespaul P, Tarrier N, Sloan RP, Malaspina D. Autonomic Regulation and Auditory Hallucinations in Individuals With Schizophrenia: An Experience Sampling Study. Schizophr Bull. 2017 Jul 1;43(4):754-763. doi: 10.1093/schbul/sbw219.

Reference Type BACKGROUND
PMID: 28177507 (View on PubMed)

Flashman LA, Flaum M, Gupta S, Andreasen NC. Soft signs and neuropsychological performance in schizophrenia. Am J Psychiatry. 1996 Apr;153(4):526-32. doi: 10.1176/ajp.153.4.526.

Reference Type BACKGROUND
PMID: 8599401 (View on PubMed)

Miall RC, Christensen LO. The effect of rTMS over the cerebellum in normal human volunteers on peg-board movement performance. Neurosci Lett. 2004 Nov 23;371(2-3):185-9. doi: 10.1016/j.neulet.2004.08.067.

Reference Type BACKGROUND
PMID: 15519754 (View on PubMed)

Davies P, Davies GL, Bennett S. An effective paradigm for conditioning visual perception in human subjects. Perception. 1982;11(6):663-9. doi: 10.1068/p110663.

Reference Type BACKGROUND
PMID: 7186617 (View on PubMed)

Dobek CE, Blumberger DM, Downar J, Daskalakis ZJ, Vila-Rodriguez F. Risk of seizures in transcranial magnetic stimulation: a clinical review to inform consent process focused on bupropion. Neuropsychiatr Dis Treat. 2015 Nov 30;11:2975-87. doi: 10.2147/NDT.S91126. eCollection 2015.

Reference Type BACKGROUND
PMID: 26664122 (View on PubMed)

Maizey L, Allen CP, Dervinis M, Verbruggen F, Varnava A, Kozlov M, Adams RC, Stokes M, Klemen J, Bungert A, Hounsell CA, Chambers CD. Comparative incidence rates of mild adverse effects to transcranial magnetic stimulation. Clin Neurophysiol. 2013 Mar;124(3):536-44. doi: 10.1016/j.clinph.2012.07.024. Epub 2012 Sep 15.

Reference Type BACKGROUND
PMID: 22986284 (View on PubMed)

Anderson BS, Kavanagh K, Borckardt JJ, Nahas ZH, Kose S, Lisanby SH, McDonald WM, Avery D, Sackeim HA, George MS. Decreasing procedural pain over time of left prefrontal rTMS for depression: initial results from the open-label phase of a multi-site trial (OPT-TMS). Brain Stimul. 2009 Apr;2(2):88-92. doi: 10.1016/j.brs.2008.09.001.

Reference Type BACKGROUND
PMID: 20161310 (View on PubMed)

Pascual-Leone A, Houser CM, Reese K, Shotland LI, Grafman J, Sato S, Valls-Sole J, Brasil-Neto JP, Wassermann EM, Cohen LG, et al. Safety of rapid-rate transcranial magnetic stimulation in normal volunteers. Electroencephalogr Clin Neurophysiol. 1993 Apr;89(2):120-30. doi: 10.1016/0168-5597(93)90094-6.

Reference Type BACKGROUND
PMID: 7683602 (View on PubMed)

Horwitz NH. Historical perspective. David Ferrier (1843-1928). Neurosurgery. 1994 Oct;35(4):793-5. doi: 10.1227/00006123-199410000-00042. No abstract available.

Reference Type BACKGROUND
PMID: 7808632 (View on PubMed)

Morabito C. David Ferrier and Luigi Luciani on the localization of brain functions. Physis Riv Int Stor Sci. 1999;36(2):387-405.

Reference Type BACKGROUND
PMID: 11640241 (View on PubMed)

Bohning, D. E. (2000). Introduction and overview of TMS physics. Transcranial magnetic stimulation in neuropsychiatry, 13-44.

Reference Type BACKGROUND

George MS, Aston-Jones G. Noninvasive techniques for probing neurocircuitry and treating illness: vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Neuropsychopharmacology. 2010 Jan;35(1):301-16. doi: 10.1038/npp.2009.87.

Reference Type BACKGROUND
PMID: 19693003 (View on PubMed)

George MS, Lisanby SH, Avery D, McDonald WM, Durkalski V, Pavlicova M, Anderson B, Nahas Z, Bulow P, Zarkowski P, Holtzheimer PE 3rd, Schwartz T, Sackeim HA. Daily left prefrontal transcranial magnetic stimulation therapy for major depressive disorder: a sham-controlled randomized trial. Arch Gen Psychiatry. 2010 May;67(5):507-16. doi: 10.1001/archgenpsychiatry.2010.46.

Reference Type BACKGROUND
PMID: 20439832 (View on PubMed)

Johnson KA, Baig M, Ramsey D, Lisanby SH, Avery D, McDonald WM, Li X, Bernhardt ER, Haynor DR, Holtzheimer PE 3rd, Sackeim HA, George MS, Nahas Z. Prefrontal rTMS for treating depression: location and intensity results from the OPT-TMS multi-site clinical trial. Brain Stimul. 2013 Mar;6(2):108-17. doi: 10.1016/j.brs.2012.02.003. Epub 2012 Mar 14.

Reference Type BACKGROUND
PMID: 22465743 (View on PubMed)

Janicak PG, Nahas Z, Lisanby SH, Solvason HB, Sampson SM, McDonald WM, Marangell LB, Rosenquist P, McCall WV, Kimball J, O'Reardon JP, Loo C, Husain MH, Krystal A, Gilmer W, Dowd SM, Demitrack MA, Schatzberg AF. Durability of clinical benefit with transcranial magnetic stimulation (TMS) in the treatment of pharmacoresistant major depression: assessment of relapse during a 6-month, multisite, open-label study. Brain Stimul. 2010 Oct;3(4):187-99. doi: 10.1016/j.brs.2010.07.003. Epub 2010 Aug 11.

Reference Type BACKGROUND
PMID: 20965447 (View on PubMed)

Mantovani A, Pavlicova M, Avery D, Nahas Z, McDonald WM, Wajdik CD, Holtzheimer PE 3rd, George MS, Sackeim HA, Lisanby SH. Long-term efficacy of repeated daily prefrontal transcranial magnetic stimulation (TMS) in treatment-resistant depression. Depress Anxiety. 2012 Oct;29(10):883-90. doi: 10.1002/da.21967. Epub 2012 Jun 11.

Reference Type BACKGROUND
PMID: 22689290 (View on PubMed)

Carpenter LL, Janicak PG, Aaronson ST, Boyadjis T, Brock DG, Cook IA, Dunner DL, Lanocha K, Solvason HB, Demitrack MA. Transcranial magnetic stimulation (TMS) for major depression: a multisite, naturalistic, observational study of acute treatment outcomes in clinical practice. Depress Anxiety. 2012 Jul;29(7):587-96. doi: 10.1002/da.21969. Epub 2012 Jun 11.

Reference Type BACKGROUND
PMID: 22689344 (View on PubMed)

Hoffman RE, Wu K, Pittman B, Cahill JD, Hawkins KA, Fernandez T, Hannestad J. Transcranial magnetic stimulation of Wernicke's and Right homologous sites to curtail "voices": a randomized trial. Biol Psychiatry. 2013 May 15;73(10):1008-14. doi: 10.1016/j.biopsych.2013.01.016. Epub 2013 Feb 26.

Reference Type BACKGROUND
PMID: 23485015 (View on PubMed)

Chen R, Gerloff C, Classen J, Wassermann EM, Hallett M, Cohen LG. Safety of different inter-train intervals for repetitive transcranial magnetic stimulation and recommendations for safe ranges of stimulation parameters. Electroencephalogr Clin Neurophysiol. 1997 Dec;105(6):415-21. doi: 10.1016/s0924-980x(97)00036-2.

Reference Type BACKGROUND
PMID: 9448642 (View on PubMed)

Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5-7, 1996. Electroencephalogr Clin Neurophysiol. 1998 Jan;108(1):1-16. doi: 10.1016/s0168-5597(97)00096-8.

Reference Type BACKGROUND
PMID: 9474057 (View on PubMed)

Anderson B, Mishory A, Nahas Z, Borckardt JJ, Yamanaka K, Rastogi K, George MS. Tolerability and safety of high daily doses of repetitive transcranial magnetic stimulation in healthy young men. J ECT. 2006 Mar;22(1):49-53. doi: 10.1097/00124509-200603000-00011.

Reference Type BACKGROUND
PMID: 16633208 (View on PubMed)

Rachid F. Maintenance repetitive transcranial magnetic stimulation (rTMS) for relapse prevention in with depression: A review. Psychiatry Res. 2018 Apr;262:363-372. doi: 10.1016/j.psychres.2017.09.009. Epub 2017 Sep 19.

Reference Type BACKGROUND
PMID: 28951141 (View on PubMed)

Provided Documents

Download supplemental materials such as informed consent forms, study protocols, or participant manuals.

Document Type: Study Protocol and Statistical Analysis Plan

View Document

Document Type: Informed Consent Form

View Document

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

1R21MH116258-01A1

Identifier Type: NIH

Identifier Source: secondary_id

View Link

2000023640

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Navigated αTMS in Treatment-resistant Schizophrenia
NCT01941251 ACTIVE_NOT_RECRUITING NA