The Validity of the Quick Renal MRI in Pediatric Kidney Disease

NCT ID: NCT03959163

Last Updated: 2024-04-03

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

RECRUITING

Clinical Phase

NA

Total Enrollment

100 participants

Study Classification

INTERVENTIONAL

Study Start Date

2019-05-07

Study Completion Date

2025-01-31

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

The investigators propose a new imaging method for children born with congenital anomalies of the urinary tract that is a rapid, injection-, sedation-, and radiation-free alternative: the quick renal MRI. This proposal hypothesizes that the quick renal MRI has high validity compared to current radiologic standard for renal infection and scarring, the 99mTechnetium-dimercaptosuccinic acid (99mTc- DMSA) renal scan in the detection of acute renal infections and scars. If the quick renal MRI is accurate, it could potentially replace the DMSA scan for those specific questions and ease the burden of testing for children with chronic renal disease. Findings from these studies will provide preliminary data and rationale for a multi-centered study to further test this new technology.

Participants will be 0-21 years of age and can expect to be on study for from 1 week (if enrolled in Aim 1) to 6 months (if enrolled in Aim 2).

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Children born with congenital anomalies of the urinary tract are susceptible to kidney infections and scarring. They form a high risk group for developing renal insufficiency in adulthood. A basic tenet in pediatric urology is that kidney infections should be prevented and otherwise promptly identified to minimize the risk of acquiring renal scars and permanent tissue damage.

The current radiologic standard for renal infection and scarring is the 99mTechnetium-dimercaptosuccinic acid (99mTc- DMSA) renal scan. This exam requires an intravenous injection, occurs over a 3 hour period, involves exposure to radiation, and can require sedation of young children. The investigators propose a new imaging method that is a rapid, injection-, sedation-, and radiation-free alternative: the quick renal MRI. This proposal hypothesizes that the quick renal MRI has high validity compared to the DMSA scan in the detection of acute renal infections and scars. If the quick renal MRI is accurate, it could potentially replace the DMSA scan for those specific questions and ease the burden of testing for children with chronic renal disease. Findings from these studies will provide preliminary data and rationale for a multi-centered study to further test this new technology.

There are two separate aims to this study, and study activities/schedule will vary depending on which aim the participant is in:

Aim 1: Inpatients presenting with acute pyelonephritis or possible acute pyelonephritis will be approached about the study. After participant's consent to the study, they will complete a clinical DMSA scan and quick MRI for the study. The DMSA scan and quick MRI will be completed within one week of each other, and ideally during the participant's inpatient stay.

Aim 2: Patients presenting to clinic for visits regarding their renal scarring will be approached about the study. If participant's consent to the study and if possible, they will schedule the quick MRI during this visit. The clinical DMSA scan and quick MRI should be completed within 6 months of each other for this patient population.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Pyelonephritis Pyelonephritis Acute Renal Sclerosis

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Allocation Method

NA

Intervention Model

SINGLE_GROUP

Primary Study Purpose

DIAGNOSTIC

Blinding Strategy

NONE

Study Groups

Review each arm or cohort in the study, along with the interventions and objectives associated with them.

DMSA/Quick MRI

All participants will go through DMSA and Quick MRI scan to help determine the validity of the Quick Renal MRI in pediatric kidney disease.

Group Type OTHER

Quick MRI

Intervention Type DIAGNOSTIC_TEST

A quick MRI scan takes about 15 mins or less. No IV or sedation will be necessary. The participant will be required to lie flat and still during the test. A parent will be allowed to be with the participant while they are in the scanner. The machine will produce loud intermittent sounds of banging or knocking so they will have to wear protective headphones. They can listen to music if they would like. If they are less than 1 year old, they will be swaddled and can be "held" during the test. If a child needs to have a parent in the scanner, it is ideal if the parent can have their head near the participant's legs and arms stretched out to hold the child's hands. If the parent needs to be by the patient's head, it can be accomplished by the parent lying head to head with the child or the parent lying on the child. Ideally they are lying head to head, or just outside of the scanner reaching in.

Interventions

Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.

Quick MRI

A quick MRI scan takes about 15 mins or less. No IV or sedation will be necessary. The participant will be required to lie flat and still during the test. A parent will be allowed to be with the participant while they are in the scanner. The machine will produce loud intermittent sounds of banging or knocking so they will have to wear protective headphones. They can listen to music if they would like. If they are less than 1 year old, they will be swaddled and can be "held" during the test. If a child needs to have a parent in the scanner, it is ideal if the parent can have their head near the participant's legs and arms stretched out to hold the child's hands. If the parent needs to be by the patient's head, it can be accomplished by the parent lying head to head with the child or the parent lying on the child. Ideally they are lying head to head, or just outside of the scanner reaching in.

Intervention Type DIAGNOSTIC_TEST

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

* Aim 1:

* Patient is admitted to American Family Children's Hospital for a febrile UTI, suspected pyelonephritis, or diagnosed pyelonephritis
* Undergoing clinical DMSA scan
* Aim 2:

* Undergoing DMSA scans as a part of their routine clinical care
* History of more than one UTI in the past year

Exclusion Criteria

* Aim 1:

* No evidence of pyuria on their urine analysis
* Negative urine culture
* Not comfortable with having a Quick MRI performed
* Both aims:

* Contraindications to MRI
Minimum Eligible Age

0 Years

Maximum Eligible Age

21 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

University of Wisconsin, Madison

OTHER

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Responsibility Role SPONSOR

Principal Investigators

Learn about the lead researchers overseeing the trial and their institutional affiliations.

Shannon Cannon, MD

Role: PRINCIPAL_INVESTIGATOR

University of Wisconsin, Madison

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

American Family Children's Hospital

Madison, Wisconsin, United States

Site Status RECRUITING

Countries

Review the countries where the study has at least one active or historical site.

United States

Central Contacts

Reach out to these primary contacts for questions about participation or study logistics.

Shannon Cannon, MD

Role: CONTACT

(608) 265-8574

Facility Contacts

Find local site contact details for specific facilities participating in the trial.

Jennifer Wang

Role: primary

608-265-3834

References

Explore related publications, articles, or registry entries linked to this study.

Freedman AL; Urologic Diseases in America Project. Urologic diseases in North America Project: trends in resource utilization for urinary tract infections in children. J Urol. 2005 Mar;173(3):949-54. doi: 10.1097/01.ju.0000152092.03931.9a.

Reference Type BACKGROUND
PMID: 15711347 (View on PubMed)

Hoberman A, Chao HP, Keller DM, Hickey R, Davis HW, Ellis D. Prevalence of urinary tract infection in febrile infants. J Pediatr. 1993 Jul;123(1):17-23. doi: 10.1016/s0022-3476(05)81531-8.

Reference Type BACKGROUND
PMID: 8320616 (View on PubMed)

Sood A, Penna FJ, Eleswarapu S, Pucheril D, Weaver J, Abd-El-Barr AE, Wagner JC, Lakshmanan Y, Menon M, Trinh QD, Sammon JD, Elder JS. Incidence, admission rates, and economic burden of pediatric emergency department visits for urinary tract infection: data from the nationwide emergency department sample, 2006 to 2011. J Pediatr Urol. 2015 Oct;11(5):246.e1-8. doi: 10.1016/j.jpurol.2014.10.005. Epub 2015 Feb 7.

Reference Type BACKGROUND
PMID: 26005017 (View on PubMed)

Copp HL, Halpern MS, Maldonado Y, Shortliffe LD. Trends in hospitalization for pediatric pyelonephritis: a population based study of California from 1985 to 2006. J Urol. 2011 Sep;186(3):1028-34. doi: 10.1016/j.juro.2011.04.101. Epub 2011 Jul 23.

Reference Type BACKGROUND
PMID: 21784477 (View on PubMed)

Chen MJ, Cheng HL, Chiou YY. Risk factors for renal scarring and deterioration of renal function in primary vesico-ureteral reflux children: a long-term follow-up retrospective cohort study. PLoS One. 2013;8(2):e57954. doi: 10.1371/journal.pone.0057954. Epub 2013 Feb 28.

Reference Type BACKGROUND
PMID: 23469116 (View on PubMed)

Rushton HG, Majd M. Dimercaptosuccinic acid renal scintigraphy for the evaluation of pyelonephritis and scarring: a review of experimental and clinical studies. J Urol. 1992 Nov;148(5 Pt 2):1726-32. doi: 10.1016/s0022-5347(17)37014-3.

Reference Type BACKGROUND
PMID: 1331545 (View on PubMed)

Hari P, Bagga A. Antimicrobial prophylaxis for children with vesicoureteral reflux. N Engl J Med. 2014 Sep 11;371(11):1071-2. doi: 10.1056/NEJMc1408559. No abstract available.

Reference Type BACKGROUND
PMID: 25207775 (View on PubMed)

Faust WC, Diaz M, Pohl HG. Incidence of post-pyelonephritic renal scarring: a meta-analysis of the dimercapto-succinic acid literature. J Urol. 2009 Jan;181(1):290-7; discussion 297-8. doi: 10.1016/j.juro.2008.09.039. Epub 2008 Nov 14.

Reference Type BACKGROUND
PMID: 19013606 (View on PubMed)

Rushton HG, Majd M, Jantausch B, Wiedermann BL, Belman AB. Renal scarring following reflux and nonreflux pyelonephritis in children: evaluation with 99mtechnetium-dimercaptosuccinic acid scintigraphy. J Urol. 1992 May;147(5):1327-32. doi: 10.1016/s0022-5347(17)37555-9.

Reference Type BACKGROUND
PMID: 1314912 (View on PubMed)

Lee LC, Lorenzo AJ, Koyle MA. The role of voiding cystourethrography in the investigation of children with urinary tract infections. Can Urol Assoc J. 2016 May-Jun;10(5-6):210-214. doi: 10.5489/cuaj.3610.

Reference Type BACKGROUND
PMID: 27713802 (View on PubMed)

Fillion ML, Watt CL, Gupta IR. Vesicoureteric reflux and reflux nephropathy: from mouse models to childhood disease. Pediatr Nephrol. 2014 Apr;29(4):757-66. doi: 10.1007/s00467-014-2761-3. Epub 2014 Feb 6.

Reference Type BACKGROUND
PMID: 24500705 (View on PubMed)

McKibben MJ, Seed P, Ross SS, Borawski KM. Urinary Tract Infection and Neurogenic Bladder. Urol Clin North Am. 2015 Nov;42(4):527-36. doi: 10.1016/j.ucl.2015.05.006. Epub 2015 Jul 7.

Reference Type BACKGROUND
PMID: 26475949 (View on PubMed)

Oakeshott P, Hunt GM, Poulton A, Reid F. Expectation of life and unexpected death in open spina bifida: a 40-year complete, non-selective, longitudinal cohort study. Dev Med Child Neurol. 2010 Aug;52(8):749-53. doi: 10.1111/j.1469-8749.2009.03543.x. Epub 2009 Dec 9.

Reference Type BACKGROUND
PMID: 20015251 (View on PubMed)

Woodhouse CR. Myelomeningocele in young adults. BJU Int. 2005 Feb;95(2):223-30. doi: 10.1111/j.1464-410X.2005.05374.x. No abstract available.

Reference Type BACKGROUND
PMID: 15667645 (View on PubMed)

Wang HH, Lloyd JC, Wiener JS, Routh JC. Nationwide Trends and Variations in Urological Surgical Interventions and Renal Outcome in Patients with Spina Bifida. J Urol. 2016 Apr;195(4 Pt 2):1189-94. doi: 10.1016/j.juro.2015.11.033. Epub 2016 Feb 28.

Reference Type BACKGROUND
PMID: 26926542 (View on PubMed)

Ouyang L, Bolen J, Valdez R, Joseph D, Baum MA, Thibadeau J. Characteristics and survival of patients with end stage renal disease and spina bifida in the United States renal data system. J Urol. 2015 Feb;193(2):558-64. doi: 10.1016/j.juro.2014.08.092. Epub 2014 Aug 25.

Reference Type BACKGROUND
PMID: 25167993 (View on PubMed)

Routh JC, Cheng EY, Austin JC, Baum MA, Gargollo PC, Grady RW, Herron AR, Kim SS, King SJ, Koh CJ, Paramsothy P, Raman L, Schechter MS, Smith KA, Tanaka ST, Thibadeau JK, Walker WO, Wallis MC, Wiener JS, Joseph DB. Design and Methodological Considerations of the Centers for Disease Control and Prevention Urologic and Renal Protocol for the Newborn and Young Child with Spina Bifida. J Urol. 2016 Dec;196(6):1728-1734. doi: 10.1016/j.juro.2016.07.081. Epub 2016 Jul 27.

Reference Type BACKGROUND
PMID: 27475969 (View on PubMed)

MacKenzie JR. A review of renal scarring in children. Nucl Med Commun. 1996 Mar;17(3):176-90. doi: 10.1097/00006231-199603000-00002.

Reference Type BACKGROUND
PMID: 8692483 (View on PubMed)

Michaud JE, Gupta N, Baumgartner TS, Kim B, Bosemani T, Wang MH. Cost and radiation exposure in the workup of febrile pediatric urinary tract infections. J Surg Res. 2016 Jun 15;203(2):313-8. doi: 10.1016/j.jss.2016.03.042. Epub 2016 Mar 26.

Reference Type BACKGROUND
PMID: 27363638 (View on PubMed)

Iskandar BJ, Sansone JM, Medow J, Rowley HA. The use of quick-brain magnetic resonance imaging in the evaluation of shunt-treated hydrocephalus. J Neurosurg. 2004 Nov;101(2 Suppl):147-51. doi: 10.3171/ped.2004.101.2.0147.

Reference Type BACKGROUND
PMID: 15835101 (View on PubMed)

Rozovsky K, Ventureyra EC, Miller E. Fast-brain MRI in children is quick, without sedation, and radiation-free, but beware of limitations. J Clin Neurosci. 2013 Mar;20(3):400-5. doi: 10.1016/j.jocn.2012.02.048. Epub 2012 Dec 21.

Reference Type BACKGROUND
PMID: 23266077 (View on PubMed)

Yue EL, Meckler GD, Fleischman RJ, Selden NR, Bardo DM, Chu O'Connor AK, Vu ET, Fu R, Spiro DM. Test characteristics of quick brain MRI for shunt evaluation in children: an alternative modality to avoid radiation. J Neurosurg Pediatr. 2015 Apr;15(4):420-6. doi: 10.3171/2014.9.PEDS14207. Epub 2015 Jan 30.

Reference Type BACKGROUND
PMID: 25634816 (View on PubMed)

Christy A, Murchison C, Wilson JL. Quick Brain Magnetic Resonance Imaging With Diffusion-Weighted Imaging as a First Imaging Modality in Pediatric Stroke. Pediatr Neurol. 2018 Jan;78:55-60. doi: 10.1016/j.pediatrneurol.2017.09.020. Epub 2017 Oct 9.

Reference Type BACKGROUND
PMID: 29174005 (View on PubMed)

Sheridan DC, Newgard CD, Selden NR, Jafri MA, Hansen ML. QuickBrain MRI for the detection of acute pediatric traumatic brain injury. J Neurosurg Pediatr. 2017 Feb;19(2):259-264. doi: 10.3171/2016.7.PEDS16204. Epub 2016 Nov 25.

Reference Type BACKGROUND
PMID: 27885947 (View on PubMed)

Thompson EM, Baird LC, Selden NR. Results of a North American survey of rapid-sequence MRI utilization to evaluate cerebral ventricles in children. J Neurosurg Pediatr. 2014 Jun;13(6):636-40. doi: 10.3171/2014.2.PEDS13567. Epub 2014 Apr 11.

Reference Type BACKGROUND
PMID: 24724716 (View on PubMed)

Kovanlikaya A, Okkay N, Cakmakci H, Ozdogan O, Degirmenci B, Kavukcu S. Comparison of MRI and renal cortical scintigraphy findings in childhood acute pyelonephritis: preliminary experience. Eur J Radiol. 2004 Jan;49(1):76-80. doi: 10.1016/S0720-048X(02)00350-9.

Reference Type BACKGROUND
PMID: 14975495 (View on PubMed)

Weller A, Barber JL, Olsen OE. Gadolinium and nephrogenic systemic fibrosis: an update. Pediatr Nephrol. 2014 Oct;29(10):1927-37. doi: 10.1007/s00467-013-2636-z. Epub 2013 Oct 22.

Reference Type BACKGROUND
PMID: 24146299 (View on PubMed)

Aoyagi J, Odaka J, Kuroiwa Y, Nakashima N, Ito T, Saito T, Kanai T, Yamagata T, Momoi MY. Utility of non-enhanced magnetic resonance imaging to detect acute pyelonephritis. Pediatr Int. 2014 Jun;56(3):e4-6. doi: 10.1111/ped.12312.

Reference Type BACKGROUND
PMID: 24894941 (View on PubMed)

Verswijvel G, Vandecaveye V, Gelin G, Vandevenne J, Grieten M, Horvath M, Oyen R, Palmers Y. Diffusion-weighted MR imaging in the evaluation of renal infection: preliminary results. JBR-BTR. 2002 Apr-May;85(2):100-3.

Reference Type BACKGROUND
PMID: 12083620 (View on PubMed)

Rathod SB, Kumbhar SS, Nanivadekar A, Aman K. Role of diffusion-weighted MRI in acute pyelonephritis: a prospective study. Acta Radiol. 2015 Feb;56(2):244-9. doi: 10.1177/0284185114520862. Epub 2014 Jan 17.

Reference Type BACKGROUND
PMID: 24443116 (View on PubMed)

De Pascale A, Piccoli GB, Priola SM, Rognone D, Consiglio V, Garetto I, Rizzo L, Veltri A. Diffusion-weighted magnetic resonance imaging: new perspectives in the diagnostic pathway of non-complicated acute pyelonephritis. Eur Radiol. 2013 Nov;23(11):3077-86. doi: 10.1007/s00330-013-2906-y. Epub 2013 Jun 8.

Reference Type BACKGROUND
PMID: 23749224 (View on PubMed)

Vivier PH, Sallem A, Beurdeley M, Lim RP, Leroux J, Caudron J, Coudray C, Liard A, Michelet I, Dacher JN. MRI and suspected acute pyelonephritis in children: comparison of diffusion-weighted imaging with gadolinium-enhanced T1-weighted imaging. Eur Radiol. 2014 Jan;24(1):19-25. doi: 10.1007/s00330-013-2971-2. Epub 2013 Jul 25.

Reference Type BACKGROUND
PMID: 23884301 (View on PubMed)

Chan YL, Chan KW, Yeung CK, Roebuck DJ, Chu WC, Lee KH, Metreweli C. Potential utility of MRI in the evaluation of children at risk of renal scarring. Pediatr Radiol. 1999 Nov;29(11):856-62. doi: 10.1007/s002470050713.

Reference Type BACKGROUND
PMID: 10552069 (View on PubMed)

Kavanagh EC, Ryan S, Awan A, McCourbrey S, O'Connor R, Donoghue V. Can MRI replace DMSA in the detection of renal parenchymal defects in children with urinary tract infections? Pediatr Radiol. 2005 Mar;35(3):275-81. doi: 10.1007/s00247-004-1335-0. Epub 2004 Oct 14.

Reference Type BACKGROUND
PMID: 15490148 (View on PubMed)

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

A539800

Identifier Type: OTHER

Identifier Source: secondary_id

SMPH/UROLOGY/UROLOGY

Identifier Type: OTHER

Identifier Source: secondary_id

2018-0492

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

Pediatric Radio Frequency Coils Generic
NCT01633866 ACTIVE_NOT_RECRUITING