Traumatic Brain Injury Associated Radiological DVT Incidence and Significance Study

NCT ID: NCT03937947

Last Updated: 2024-11-15

Study Results

Results pending

The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.

Basic Information

Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.

Recruitment Status

COMPLETED

Total Enrollment

90 participants

Study Classification

OBSERVATIONAL

Study Start Date

2019-09-28

Study Completion Date

2023-09-24

Brief Summary

Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.

Whilst deep vein thrombosis (DVT) is common following traumatic brain injury (TBI), optimal timing and safety of pharmacological prophylaxis is uncertain. Paradoxically the harm associated with the occurrence of is also unclear.

This study is an observational pilot that aims to define the incidence of proximal DVT in patients with moderate to severe TBI. It seeks prospectively to determine if there is an association between DVT and outcome. It also seeks to explore possible associations between the occurrence of DVT and the incidence of lung injury and/or ventilator associated pneumonia.

Detailed Description

Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.

Deep Venous Thrombosis (DVT) is common following trauma and patients with TBI are at increased risk. In studies of TBI that screened for DVT in the proximal lower limb veins, the incidence is between 14 and 18%. Pharmacological thromboprophylaxis (PT) may be effective in reducing the incidence of DVT following TBI. However, there is a reluctance to commence it due to concerns about the risk of intracranial haematoma expansion and contusion enlargement. PT is therefore often delayed, exposing patients to potential risks and complications of DVT. Recent systematic reviews could not answer the question of when to commence PT as no high quality randomised controlled trials addressing this question have been conducted. The latest edition of the Brain Trauma Foundation Guidelines could not make a recommendation on this issue . A Delphi exercise involving the investigator's network of United Kingdom(UK) Eurotherm3235 study centres found that the leading concern of specialists in UK neurocritical care, that they felt required further study, was when to commence PT following moderate to severe TBI.

Paradoxically however, despite these concerns over the use of PT in this population of patients, evidence of harm associated with the confirmed presence of proximal DVT is not yet convincing. This has additional significance as without clear evidence of harm associated with DVT complicating TBI, trials to address the questions of safety and efficacy of earlier use of PT are difficult to design and unlikely to attract the necessary funding.

From a search of a trauma registry of patients at risk of DVT who underwent venous screening, in TBI patients the occurrence of DVT was associated with increased ventilator days (Mean (SD), 18.0 (14.9) vs. 9.3 (7.9) days for DVT vs. no DVT, p=0.014) and ICU length of stay (23.0 (14.5) vs. 13.1 (9.8) days for DVT vs. no DVT, p=0.006). Similar results were seen in a post hoc analysis of the EPO TBI trial. This was a randomised controlled trial (RCT) of the effect of erythropoietin (EPO) verses placebo on outcome following TBI. Repeated lower limb screening for the presence of DVT was conducted as part of the protocol. Both ventilator days (Median (IQR) 11 (6-17) vs. 8 (4-14) days for DVT vs. no DVT, p\<0.001) and ICU length of stay (17 (11-22) vs. 12 (6-19) days DVT vs. no DVT, p\<0.001). Good neurological outcome at 6 months was significantly less frequent in those that developed DVT (45.4 vs. 57.9% DVT vs. no DVT, p=0.01). Whilst these findings are clinically important they are the result of retrospective and post hoc analysis. They therefore require to be prospectively validated if they are to be accepted.

One possible explanation for an increase in ventilator dependency and ICU length of stay could be the occurrence of undiagnosed pulmonary emboli causing acute lung injury (ALI). The occurrence of ventilation perfusion mismatching, deterioration in arterial partial pressure: fraction inspired oxygen ratio (PaO2:FiO2) and radiological changes on chest x-ray, being interpreted as evidence of pulmonary infection. This is supported by local audit data from June to October 2017 which found that 37% of brain injured patients had a clinical diagnosis of ventilator associated pneumonia (VAP) and were treated with antibiotics but lacked subsequent microbiological confirmation. It is also possible that small pulmonary emboli might predispose to pulmonary infection, explaining why the incidence of ventilator associated pneumonia (VAP) remains high in this population (40%, in the same local audit) despite the adoption of measures which have lowered VAP rates in other critically ill patient groups.

Lung Brain "cross-talk" could link evidence of ALI to a negative impact on neurological outcome in these patients. A disproportionate increase in mortality in patients with TBI and ALI has been reported. This was greatly in excess of deaths attributable to pulmonary dysfunction. Similarly, in animal models, ALI was found to be associated with cognitive impairment, and biomarker/histological evidence of neuronal injury.

This is a prospective, potentially multi centre, observational pilot study that aims to determine the incidence of DVT after TBI. Patients admitted to an ICU within 72 hours of suffering a TBI will be eligible for inclusion. The study will run for 2 years with a 16 month recruitment period. Based on current activity in Edinburgh the investigators estimate that 50 to 60 patients will be eligible for recruitment over the course of the study. In order to ensure satisfactory recruitment, the investigators will also approach centres that have expressed an interest.

Once consent is obtained for the patient to be enrolled in the study, a compression ultrasound scan (USS) of both legs will be carried out as soon as possible so that the first USS is completed within 72 hours of injury. USS will be repeated on alternate days up to Day 10 from injury. Daily data collection will include information on the use of mechanical and pharmacological thromboprophylaxis, ventilator dynamics including FiO2 and PaO2, chest X ray reports, clinical and microbiological diagnosis of ventilator associated pneumonia, ventilator days and ICU and hospital length of stay. The Modified Oxford Handicap Scale will be completed for all patients on day 28, hospital discharge or death whichever is sooner Patients will then be followed up at 6 months by the study team, at which time an extended Glasgow Outcome Scale Questionnaire will be completed.

An amendment to the protocol is also being prepared to include assessment of blood coagulation by standard laboratory testing and viscoelastic methods.

Conditions

See the medical conditions and disease areas that this research is targeting or investigating.

Traumatic Brain Injury Deep Vein Thrombosis Acute Lung Injury Ventilator Associated Pneumonia

Study Design

Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.

Observational Model Type

COHORT

Study Time Perspective

PROSPECTIVE

Eligibility Criteria

Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.

Inclusion Criteria

1. Age ≥ 16 years
2. Admission to critical care
3. moderate/severe, non-penetrating traumatic brain injury
4. Abnormal brain CT Scan
5. Post resuscitation Glasgow coma score (GCS) ≤12, or GCS motor component ≤5
6. Able to complete consent and first USS within 72 hours of injury

Exclusion Criteria

1. Normal brain CT scan
2. Unlikely to survive for the next 24 hours in the opinion of the ICU Consultant or Consultant Neurosurgeon treating the patient
3. Contra indication to normal prophylactic measures, including heparin, were indicated
4. Known blood clotting disorder or thrombophilia
5. Significant pelvic or lower limb trauma
6. Malignancy
7. Pregnancy or recently post-partum
Minimum Eligible Age

16 Years

Eligible Sex

ALL

Accepts Healthy Volunteers

No

Sponsors

Meet the organizations funding or collaborating on the study and learn about their roles.

NHS Lothian

OTHER_GOV

Sponsor Role lead

Responsible Party

Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.

Jonathan Rhodes

Consultant in Intensive Care and Anaesthesia

Responsibility Role PRINCIPAL_INVESTIGATOR

Locations

Explore where the study is taking place and check the recruitment status at each participating site.

Intensive Care Unit, Western General Hospital

Edinburgh, Midlothian, United Kingdom

Site Status

Countries

Review the countries where the study has at least one active or historical site.

United Kingdom

Other Identifiers

Review additional registry numbers or institutional identifiers associated with this trial.

WKR0-2018-0020

Identifier Type: OTHER_GRANT

Identifier Source: secondary_id

WKR0-2018-0020

Identifier Type: OTHER_GRANT

Identifier Source: secondary_id

AC18105

Identifier Type: -

Identifier Source: org_study_id

More Related Trials

Additional clinical trials that may be relevant based on similarity analysis.

A Novel Method for Determination of Thromboembolic Stroke Origin
NCT06961604 NOT_YET_RECRUITING EARLY_PHASE1