Development of a Point of Care System for Automated Coma Prognosis
NCT ID: NCT03826407
Last Updated: 2023-02-06
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
33 participants
OBSERVATIONAL
2019-10-01
2023-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Automated Pupillometry for Coma Prognostication After Cardiac Arrest
NCT02607878
Using EEG to Study Coma in the Neurocritical Care Unit
NCT01897194
Awareness Detection and Communication in Disorders of Consciousness
NCT03827187
Evaluation of EEG Power Spectrum in Patients With Traumatic Coma
NCT06321146
Comparison Between High-density Electroencephalography and Conventional Electroencephalography for Comatose Patients
NCT02588482
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Objective: The investigators will apply innovative machine learning methods to analyze patient EEGs (50 patients and 40 healthy controls) to develop a simple, objective, replicable, and inexpensive point of care system which can significantly improve the accuracy of coma prognosis relative to current methods. The physical requirements of the proposed system consist only of an EEG system (inexpensive in terms of medical equipment) and a conventional laptop computer.
Methodology: The investigators intend to extend the team's newest algorithms and develop machine learning tools for automatic analysis and detection of ERP components. Preliminary results by the team in this respect have been very promising. The most salient features (i.e., biomarkers) extracted from the ERP will be identified and combined in an optimal fashion to give an accurate indicator of prognosis. Features will be extracted from resting state brain networks and from network trajectories associated with the processing of ERP signals.
Significance: The proposed work will enable critical care physicians to assess coma prognosis with speed and accuracy. Thus, families and their health care team will be provided the most accurate information possible to guide discussions of goals of care and life-sustaining therapies in the context of dealing with the consequences of devastating neurological injury.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
DOC patients
Patients in coma (GCS score of 3-8) or with other disorder of consciousness, primarily Minimally Conscious State (MCS) or Unresponsive Wakefulness Syndrome (UWS; also known as vegetative state)
No interventions assigned to this group
Healthy Control
Matched healthy controls without current neurological diagnoses
No interventions assigned to this group
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Patients (≥ 18 years of age) who have other disorders of consciousness, primarily Minimally Conscious State (MCS) or Unresponsive Wakefulness Syndrome (UWS; also known as vegetative state).
Exclusion Criteria
* Severe renal failure (i.e., Urea ≥ 40)
* Previous open-head injury
* Known primary and secondary central nervous system malignancy
* Known hearing impairment
* Previous intracranial pathology requiring neurosurgical interventions in the past 72 hours
* Anyone who is deemed medically unsuitable for this study by the attending intensivists
Healthy Controls:
Inclusion:
* ≥ 18 years of age
* no visual, language, learning, or hearing problems
* no history of neurological or psychiatric disorder
* not currently taking any medications that act on the central nervous system, such as antidepressants, anxiolytics, or anti-epileptics
Exclusion:
(During the COVID-19 pandemic only)
* ≥ 60 years of age
* have a weakened immune system
* have one or more of the COVID-19 high risk medical conditions, according to the government of Canada website: https://www.canada.ca/en/public-health/services/publications/diseases-conditions/people-high-risk-for-severe-illness-covid-19.html.
18 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Canadian Institutes of Health Research (CIHR)
OTHER_GOV
Natural Sciences and Engineering Research Council, Canada
OTHER
Hamilton Health Sciences Corporation
OTHER
Brain Vision Solutions Inc.
UNKNOWN
McGill University
OTHER
McMaster University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
John F Connolly, PhD
Role: PRINCIPAL_INVESTIGATOR
McMaster University
Alison Fox-Robichaud, MD
Role: STUDY_CHAIR
Hamilton Health Sciences - Hamilton General site
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
McMaster University Hamilton Health Sciences / Hamilton General Hospital
Hamilton, Ontario, Canada
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Jones C. Glasgow coma scale. Am J Nurs. 1979 Sep;79(9):1551-3. No abstract available.
Chiappa KH, Hill RA. Evaluation and prognostication in coma. Electroencephalogr Clin Neurophysiol. 1998 Feb;106(2):149-55. doi: 10.1016/s0013-4694(97)00118-1.
de Sousa LC, Colli BO, Piza MR, da Costa SS, Ferez M, Lavrador M. Auditory brainstem response: prognostic value in patients with a score of 3 on the Glasgow Coma Scale. Otol Neurotol. 2007 Apr;28(3):426-8. doi: 10.1097/MAO.0b013e3180326170.
Logi F, Fischer C, Murri L, Mauguiere F. The prognostic value of evoked responses from primary somatosensory and auditory cortex in comatose patients. Clin Neurophysiol. 2003 Sep;114(9):1615-27. doi: 10.1016/s1388-2457(03)00086-5.
Lew HL, Poole JH, Castaneda A, Salerno RM, Gray M. Prognostic value of evoked and event-related potentials in moderate to severe brain injury. J Head Trauma Rehabil. 2006 Jul-Aug;21(4):350-60. doi: 10.1097/00001199-200607000-00006.
Kane NM, Butler SR, Simpson T. Coma outcome prediction using event-related potentials: P(3) and mismatch negativity. Audiol Neurootol. 2000 May-Aug;5(3-4):186-91. doi: 10.1159/000013879.
Morlet D, Fischer C. MMN and novelty P3 in coma and other altered states of consciousness: a review. Brain Topogr. 2014 Jul;27(4):467-79. doi: 10.1007/s10548-013-0335-5. Epub 2013 Nov 27.
Fischer C, Morlet D, Bouchet P, Luaute J, Jourdan C, Salord F. Mismatch negativity and late auditory evoked potentials in comatose patients. Clin Neurophysiol. 1999 Sep;110(9):1601-10. doi: 10.1016/s1388-2457(99)00131-5.
Holeckova I, Fischer C, Giard MH, Delpuech C, Morlet D. Brain responses to a subject's own name uttered by a familiar voice. Brain Res. 2006 Apr 12;1082(1):142-52. doi: 10.1016/j.brainres.2006.01.089.
Garrido MI, Kilner JM, Stephan KE, Friston KJ. The mismatch negativity: a review of underlying mechanisms. Clin Neurophysiol. 2009 Mar;120(3):453-63. doi: 10.1016/j.clinph.2008.11.029. Epub 2009 Jan 31.
Sonnadara RR, Alain C, Trainor LJ. Occasional changes in sound location enhance middle latency evoked responses. Brain Res. 2006 Mar 3;1076(1):187-92. doi: 10.1016/j.brainres.2005.12.093. Epub 2006 Feb 17.
Duncan CC, Barry RJ, Connolly JF, Fischer C, Michie PT, Naatanen R, Polich J, Reinvang I, Van Petten C. Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin Neurophysiol. 2009 Nov;120(11):1883-1908. doi: 10.1016/j.clinph.2009.07.045. Epub 2009 Sep 30.
Schnakers C, Vanhaudenhuyse A, Giacino J, Ventura M, Boly M, Majerus S, Moonen G, Laureys S. Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment. BMC Neurol. 2009 Jul 21;9:35. doi: 10.1186/1471-2377-9-35.
Guldenmund P, Stender J, Heine L, Laureys S. Mindsight: diagnostics in disorders of consciousness. Crit Care Res Pract. 2012;2012:624724. doi: 10.1155/2012/624724. Epub 2012 Nov 14.
Giacino JT, Fins JJ, Laureys S, Schiff ND. Disorders of consciousness after acquired brain injury: the state of the science. Nat Rev Neurol. 2014 Feb;10(2):99-114. doi: 10.1038/nrneurol.2013.279. Epub 2014 Jan 28.
Laureys S, Celesia GG, Cohadon F, Lavrijsen J, Leon-Carrion J, Sannita WG, Sazbon L, Schmutzhard E, von Wild KR, Zeman A, Dolce G; European Task Force on Disorders of Consciousness. Unresponsive wakefulness syndrome: a new name for the vegetative state or apallic syndrome. BMC Med. 2010 Nov 1;8:68. doi: 10.1186/1741-7015-8-68.
Armanfard N, Komeili M, Reilly JP, Mah R, Connolly JF. Automatic and continuous assessment of ERPs for mismatch negativity detection. Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:969-972. doi: 10.1109/EMBC.2016.7590863.
Ghosh-Dastidar S, Adeli H, Dadmehr N. Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Trans Biomed Eng. 2008 Feb;55(2 Pt 1):512-8. doi: 10.1109/TBME.2007.905490.
Guler I, Ubeyli ED. Multiclass support vector machines for EEG-signals classification. IEEE Trans Inf Technol Biomed. 2007 Mar;11(2):117-26. doi: 10.1109/titb.2006.879600.
Cao C, Tutwiler RL, Slobounov S. Automatic classification of athletes with residual functional deficits following concussion by means of EEG signal using support vector machine. IEEE Trans Neural Syst Rehabil Eng. 2008 Aug;16(4):327-35. doi: 10.1109/TNSRE.2008.918422.
Ravan M, Hasey G, Reilly JP, MacCrimmon D, Khodayari-Rostamabad A. A machine learning approach using auditory odd-ball responses to investigate the effect of Clozapine therapy. Clin Neurophysiol. 2015 Apr;126(4):721-30. doi: 10.1016/j.clinph.2014.07.017. Epub 2014 Aug 27.
Khodayari-Rostamabad A, Reilly JP, Hasey GM, de Bruin H, Maccrimmon DJ. A machine learning approach using EEG data to predict response to SSRI treatment for major depressive disorder. Clin Neurophysiol. 2013 Oct;124(10):1975-85. doi: 10.1016/j.clinph.2013.04.010. Epub 2013 May 15.
Wijdicks EF, Bamlet WR, Maramattom BV, Manno EM, McClelland RL. Validation of a new coma scale: The FOUR score. Ann Neurol. 2005 Oct;58(4):585-93. doi: 10.1002/ana.20611.
Jennett B, Bond M. Assessment of outcome after severe brain damage. Lancet. 1975 Mar 1;1(7905):480-4. doi: 10.1016/s0140-6736(75)92830-5.
Armanfard N, Reilly JP, Komeili M. Local Feature Selection for Data Classification. IEEE Trans Pattern Anal Mach Intell. 2016 Jun;38(6):1217-27. doi: 10.1109/TPAMI.2015.2478471. Epub 2015 Sep 14.
Armanfard N, Reilly JP, Komeili M. Logistic Localized Modeling of the Sample Space for Feature Selection and Classification. IEEE Trans Neural Netw Learn Syst. 2018 May;29(5):1396-1413. doi: 10.1109/TNNLS.2017.2676101. Epub 2017 Mar 21.
Connolly JF, Reilly JP, Fox-Robichaud A, Britz P, Blain-Moraes S, Sonnadara R, Hamielec C, Herrera-Diaz A, Boshra R. Development of a point of care system for automated coma prognosis: a prospective cohort study protocol. BMJ Open. 2019 Jul 17;9(7):e029621. doi: 10.1136/bmjopen-2019-029621.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
CPG158287
Identifier Type: OTHER_GRANT
Identifier Source: secondary_id
CHRP 523461-18
Identifier Type: OTHER_GRANT
Identifier Source: secondary_id
ComaML2018
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.