Pilot RCT of Therapeutic Hypothermia Plus Neuromuscular Blockade in COVID-19 Patients With ARDS
NCT ID: NCT03376854
Last Updated: 2021-04-30
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
WITHDRAWN
PHASE2
INTERVENTIONAL
2018-05-01
2021-04-27
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Trial of Therapeutic Hypothermia in Patients With ARDS
NCT04545424
Mild Hypothermia for COVID-19 ARDS
NCT04570462
Evaluation of an Anti-Shivering Protocol Cardiac Arrest
NCT05264246
Therapeutic Hypothermia to Improve Survival After Cardiac Arrest in Pediatric Patients-THAPCA-OH [Out of Hospital] Trial
NCT00878644
Induction of Mild Hypothermia in Resuscitated Cardiac Arrest Patients
NCT00282373
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Despite recent advances in supportive care for patients with acute respiratory distress syndrome (ARDS), mortality remains \>40%. Fever worsens and hypothermia mitigates animal models of ALI and in small non-randomized in patients with ARDS. Since hypothermia reduces oxygen utilization as long as shivering is blocked, TH may reduce injury in part by allowing lower levels of assisted ventilation. TH likely exerts additional lung protective effects by directly modifying temperature-dependent cellular processes in endothelium, epithelium, and leukocytes. Neuromuscular blockade (NMB) is the ultimate treatment to block shivering and is frequently used in patients with ARDS to facilitate ventilator management. Since the recently completed NHLBI PETAL ROSE trial showed that NMB caused conferred neither benefit nor harm in patients with moderate to severe ARDS, the investigators have bundled TH with NMB to reduce shivering. An open-label study of 8 ARDS patients showed that studying TH + NMB in patients with moderate to severe ARDS was feasible. Moreover, the patients treated with TH +NMB had more 28-day ventilator-free days (VFDs), ICU-free days (ICU-FDs) and greater hospital survival (75% vs. 25%; p = 0.027) than historical controls with ARDS and NMB but without TH. Within the limits of historical comparisons, these results support further study of TH in ARDS. A Department of Defense-funded Phase IIb multicenter trial of TH+NMB in patients with moderate to severe ARDS will begin enrolling in Fall, 2020. Since COVID-19 has become the most common cause of ARDS, it is important to understand whether patients with COVID-19-associated ARDS can be included in the multicenter trial.
Focus of Study: We will conduct a single-site feasibility and safety RCT pilot of TH+NMB for 48h vs. usual temperature management in 20 patients with COVID-19-associated ARDS. We will also analyze efficacy markers to help decide whether the treatment duration (48h) to be used in the multicenter trial is appropriate for patients with COVID-19-associated ARDS. The results of this pilot help us decide whether to include patients with COVID-19-associated ARDS in our planned multicenter trial of TH+NMB in ARDS from all causes or to pursue a separate trial focused on patients with COVID-19-associated ARDS.
Primary and secondary objectives: The primary objective is to assess the safety and feasibility of the 48h TH+NMB treatment protocol. The secondary objective is to compare the TH+NMB and control arms for efficacy markers to be used in the multicenter trial.
Study design: The CHILL trial is a single center RCT.
Intervention: The study intervention is TH to core temperature 34°-35°C + NMB for 48h. Patients in the TH+NMB arm will receive deep sedation, continuous infusion of cisatracurium and mechanical ventilation for at least 48h. Decisions about transition to unassisted breathing, extubation, and transfer from ICU will be based on criteria in the CHILL study protocol.
TH+NMB: Once sedation and NMB are confirmed, TH to 34°-35°C will be initiated using surface cooling. Temperature will be measured from a central probe. Once target temperature is reached, TH will be maintained for 48h. Patients will then be rewarmed to 35.5°C by 0.3°C/h and the cooling devices removed. Post-TH fever suppression is not part of the CHILL protocol and will be performed at the discretion of the primary ICU team. TH+NMB will be aborted for persistent severe bradycardia, uncontrolled bleeding, and intractable arrhythmias.
Usual temperature management: Patients will receive light sedation (RASS 0 to -1). During the 54h post-randomization treatment period, acetaminophen will be given for core temperature \>38°C and surface cooling will be initiated if core temperature remains \>38°C within ≥45 minutes of receiving acetaminophen and adjusted to maintain core temperature ≤38°C. If core temperature ≤36°C, patients in this arm will receive surface warming to core temperature 37°C. Following the 54h treatment period, temperature will be managed at the discretion of the primary ICU team.
Concomitant Treatment: Since prone positioning independently improves survival in ARDS, starting and stopping rules for prone positioning have been protocolized.
Primary and Secondary Endpoints:
Primary endpoint: The low and high core temperatures in each 2-hour period will be recorded for each of the first four study days. The time required to reach the target temperature and the percent of readings within the target range in the TH+NMB arm will be determined.
Secondary endpoints:
Clinical: (a) 28-day VFDs. The 28-day VFDs will be calculated at day 28. (b) 28-day ICU-FDs:. The 28-day ICU-FDs will be calculated at day 28; (c) day 0, 1, 2, 3, 4, and 7 non-neurologic SOFA score; (d) Glasgow coma score at hospital discharge; (e) 60- and 90-day survival; (f) 60- and 90-day functional status. The Montreal Cognitive Assessment Tool (MOCA) will be administered at ICU and hospital discharge.
Physiologic: (a) day-3 and -7 driving pressure; (b) day-3 and day-7 oxygen saturation index (OSI).
Plasma Biomarker: Day 0, 1, 2, 3, 4, and 7 plasma IL-1ß, IL-6, IL-8, IL-18, soluble-RAGE, surfactant protein-D, soluble ICAM-1, MMP8, and soluble TNFRI.
Safety:
1. For the first 54h: (a) continuous cardiac monitoring for bradycardia with associated hypotension requiring i.v. fluid or vasopressors; (b) every 6h blood glucose measurement; (c) every 12 h potassium, magnesium and phosphate; (d) significant bleeding event (requiring 2u packed red blood cells or surgical or interventional radiologic intervention)
2. First 7 days: (a) Ventilator-associated pneumonia (VAP); (b) other secondary infections; (c) monitor for SAEs
Schedule of Clinical and Laboratory Evaluations:
1. Definitions:
1. Day 0: day of randomization
2. Comprehensive metabolic panel (CMP): includes basic electrolytes, BUN, creatinine, ALT, AST, alkaline phosphatase, bilirubin, calcium, magnesium, phosphate, C-reactive protein (CRP)
3. CBC: complete blood count
4. Driving Pressure = Plateau Pressure - PEEP with patient NOT making inspiratory effort (on NMB or post-NMB and observed RR at set ventilator rate)
5. OSI = Mean airway pressure x 100 x FIO2/SpO2
2. Clinical and Research laboratory testing: Two purple top (EDTA; 14 ml blood) tubes will be collected for biomarker analysis at randomization and on study days 1, 2, 3, 4, and 7 at 8:00-10:00 on study days 1, 2, 3, 4, and 7. Clinical laboratory testing required for secondary clinical outcomes at enrollment and on study days 1, 2, 3, 4, and will be performed as part of usual clinical care whenever possible) at 6:00-10:00 AM and 6:00-10:00 PM
3. Day -2 to 0 (Screening and enrollment): To facilitate randomization within the inclusion window, we will consent and enroll based on partial fulfillment of randomization criteria and randomize once all criteria are met. Patients with COVID-19, receiving mechanical ventilation for ≤7 days and have bilateral pulmonary opacities not fully explained by pleural effusions, atelectasis, or hydrostatic pulmonary edema for \<48h will be offered enrollment and will be randomized when P/F ratio is \<200. In patients without arterial blood gas values, the P/F ratio will be inferred from SpO2 readings as described by Brown et al. (Chest 150:307; 2016).
1. Pregnancy testing in women of child-bearing years
2. Obtain informed consent from patient or Legally Authorized Representative (LAR) depending on capacity
3. Complete Screening, enrollment, and randomization CRFs.
4. If P/F\<200 at enrollment, proceed with randomization, otherwise follow until P/F \< 200 or patient exits the 48 hr ARDS or 7 day mechanical ventilation windows.
3\. Day 0 (Randomization day): Pt. identified in screen:
1. Obtain baseline plasma for research testing. If \>8h since last CBC and CMP or \>24 since last CRP, send new samples to lab.
2. Randomize.
3. If patient does not have a central temperature probe, place esophageal probe.
4. For TH+NMB arm, confirm adequate sedation (RASS -4) and NMB (Train of four ≤2 twitch) and initiate TH protocol.
5. Complete Randomization Worksheet and Randomization and Baseline Data CRFs
6. Note time cooling initiated and time patient first reached target temperature on Baseline CRF
4.Day 1-4:
a. Fill out Daily CRFs b. Collect plasma for research testing. c. Measure Driving Pressure and OSI d. Make sure CBC and CMP sent every 12h and CRP every 24h e. Rewarming starts after 48h cooling on day 3 f. Complete Unassisted Breathing Checklist form if applicable g. Assess for adverse events
5\. Days 5-6:
a. Follow for ventilator status, ICU status, survival, SAEs b. Follow CRP daily c. Complete Unassisted Breathing Checklist form if applicable d. Assess for adverse events
6\. Day 7:
a. Fill out Day 7 CRF b. Collect plasma for research testing. c. Measure Driving Pressure and OSI d. Make sure CBC, CMP, and CRP sent e. Complete Unassisted Breathing Checklist form if applicable f. Assess for adverse events
7\. Day 8-27:
a. Follow for ventilator status, ICU status, survival, SAEs b. Complete Unassisted Breathing Checklist form if applicable
8\. Day 28:
1. Complete Day 28 CRF
2. Calculate 28 day VFDs and ICU-FDs
9\. When patient is discharged from the ICU, complete ICU discharge CRF
10\. When patient is discharged from the hospital, complete Hospital discharge CRF.
11\. Day 60 and 90: Follow up about patient status. Complete phone follow-up CRF.
Study population: Adult patients with COVID-19 diagnosed by PCR testing within previous 2 weeks and moderate to severe ARDS based on Berlin criteria (P/F \< 200 while on PEEP ≥8 cm H2O) \<48h in duration.
Data Analysis: This is a pilot trial to determine whether patients with COVID-19-associated patients with ARDS should be included in a multicenter trial of TH+NMB in patients with ARDS from all causes. The data from this pilot will not be merged with data from the planned multicenter trial. The primary analysis of this pilot study will be to determine the effectiveness of the TH+NMB protocol in maintaining targeted temperature and to determine whether there are any safety issues with the TH+NMB protocol in this patient population.
Data Management: Data for this pilot RCT will be recorded on paper CRFs. Completion of all fields will be checked in real-time. The forms have been designed to be compatible with the electronic versions developed for the multicenter trial.
Randomization Plan: The investigators will use a randomization protocol stratified for proning status using pre-generated random assignment lists. Assignments will be made using an in-house Excel-based assignment tool, which blinds the observer to the assignment list.
Subject Participation Duration: The duration of intervention, TH + NMB vs. usual temperature management, is 48h, followed by rewarming for 3-6h in the TH group. NMB will be discontinued and sedation reduced when subjects are rewarmed to core temperature ≥35.5°C. In the control group fever and hypothermia during continuous renal replacement therapy (CRRT) will be treated by protocol for 54h post-randomization. Physiologic and clinical parameters will be collected through study day 7. In hospital follow-up up to 90 days will include determination of 28-day VFDs and ICU-FDs, and day of hospital discharge. When the patient regains competence, consent for continued participation will be obtained
Study Duration: Completion of enrollment is anticipated within 6 months.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
TREATMENT
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Hypothermia + Neuromuscular blockade
Deep sedation and Neuromuscular blockade (NMB) and surface temperature management to maintain core temperature between 34 and 35°C for 48h, then rewarm to 36°C at 0.33°C per h and NMB discontinued when core temp reaches 35.5°C.
Hypothermia
Subjects will be cooled using either cooling blankets or gel-pad systems to maintain core temperature 34-35°C.
Neuromuscular Blocking Agents
Subjects in the TH + NMB arm will be deeply sedated using agents at the discretion of the primary ICU team, then start continuous iv infusion of either cisatracurium, atracurium, or vecuronium titrated to 2 twitches on train of four monitoring and further titrated to ablate visible shivering.
Standard of care
Acetaminophen and surface temperature management to maintain core temperature between 37°C and 38°C. Rewarming to 37°C for hypothermia ≤36°C with continuous renal replacement therapy.
Standard of Care
Subjects who are hypothermic (≤36°C) during CRRT will receive surface warming to restore core temperature to 37°C. Patients with core temperature \>38°C will receive 650 mg acetaminophen and, if temperature remains \>38°C, surface cooling will be initiated to return core temperature to 37-38°C.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Hypothermia
Subjects will be cooled using either cooling blankets or gel-pad systems to maintain core temperature 34-35°C.
Neuromuscular Blocking Agents
Subjects in the TH + NMB arm will be deeply sedated using agents at the discretion of the primary ICU team, then start continuous iv infusion of either cisatracurium, atracurium, or vecuronium titrated to 2 twitches on train of four monitoring and further titrated to ablate visible shivering.
Standard of Care
Subjects who are hypothermic (≤36°C) during CRRT will receive surface warming to restore core temperature to 37°C. Patients with core temperature \>38°C will receive 650 mg acetaminophen and, if temperature remains \>38°C, surface cooling will be initiated to return core temperature to 37-38°C.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. men and women
3. any race/ethnicity
4. 18-65 years of age
5. endotracheal tube or tracheostomy in place and mechanically ventilated for \< 7 days;
6. radiologic evidence of bilateral pulmonary infiltrates not fully explained by hydrostatic pulmonary edema
7. access to an LAR to provide consent (remote consent is permissible).
Exclusion Criteria
1. Missed ARDS window (\>48hrs)
2. Missed mechanical ventilation window (\>7 days)
3. Refractory hypotension (\> 0.2 mcg/kg/min of norepinephrine or equivalent dose for minimum of 6 h)
4. Core temperature \<35.5°C while not receiving CRRT
5. Patient is unable to give consent and no legally authorized representative is available;
6. Significant, active bleeding (\>3u blood products and/or surgical/IR intervention)
7. Platelets \<10K/mm3 (uncorrected)
8. Active hematologic malignancy
9. Skin process precludes cooling device
10. Moribund, not likely to survive 72h
11. Pre-morbid condition makes it unlikely that patient will survive 28 days
12. Do Not Resuscitate status
13. Not likely to remain intubated for ≥48h
14. Physician unwilling to participate
15. Severe underlying lung disease
1. On home O2
2. On BIPAP (except for OSA)
3. Prior lung transplantation
16. BMI \>45 kg/m2
17. Known NYHA class IV heart disease
18. Acute Coronary Syndrome past 30 days (MI, unstable angina)
19. Cardiac arrest within 30 days of enrollment
20. burns over \>20% of the body surface
21. severe chronic liver disease (Child-Pugh of 12-15)
22. Previously randomized in CHILL study
18 Years
65 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
University of Maryland, Baltimore
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Jeffrey Hasday
Professor of Medicine
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Jeffrey D Hasday, MD
Role: PRINCIPAL_INVESTIGATOR
University of Maryland, Baltimore
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
University of Maryland Medical Center
Baltimore, Maryland, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Acute Respiratory Distress Syndrome Network; Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000 May 4;342(18):1301-8. doi: 10.1056/NEJM200005043421801.
Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, Jaber S, Arnal JM, Perez D, Seghboyan JM, Constantin JM, Courant P, Lefrant JY, Guerin C, Prat G, Morange S, Roch A; ACURASYS Study Investigators. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010 Sep 16;363(12):1107-16. doi: 10.1056/NEJMoa1005372.
Guerin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, Mercier E, Badet M, Mercat A, Baudin O, Clavel M, Chatellier D, Jaber S, Rosselli S, Mancebo J, Sirodot M, Hilbert G, Bengler C, Richecoeur J, Gainnier M, Bayle F, Bourdin G, Leray V, Girard R, Baboi L, Ayzac L; PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013 Jun 6;368(23):2159-68. doi: 10.1056/NEJMoa1214103. Epub 2013 May 20.
Villar J, Blanco J, Kacmarek RM. Current incidence and outcome of the acute respiratory distress syndrome. Curr Opin Crit Care. 2016 Feb;22(1):1-6. doi: 10.1097/MCC.0000000000000266.
Hasday JD, Garrison A, Singh IS, Standiford T, Ellis GS, Rao S, He JR, Rice P, Frank M, Goldblum SE, Viscardi RM. Febrile-range hyperthermia augments pulmonary neutrophil recruitment and amplifies pulmonary oxygen toxicity. Am J Pathol. 2003 Jun;162(6):2005-17. doi: 10.1016/S0002-9440(10)64333-7.
Lipke AB, Matute-Bello G, Herrero R, Kurahashi K, Wong VA, Mongovin SM, Martin TR. Febrile-range hyperthermia augments lipopolysaccharide-induced lung injury by a mechanism of enhanced alveolar epithelial apoptosis. J Immunol. 2010 Apr 1;184(7):3801-13. doi: 10.4049/jimmunol.0903191. Epub 2010 Mar 3.
Lipke AB, Matute-Bello G, Herrero R, Wong VA, Mongovin SM, Martin TR. Death receptors mediate the adverse effects of febrile-range hyperthermia on the outcome of lipopolysaccharide-induced lung injury. Am J Physiol Lung Cell Mol Physiol. 2011 Jul;301(1):L60-70. doi: 10.1152/ajplung.00314.2010. Epub 2011 Apr 22.
Rice P, Martin E, He JR, Frank M, DeTolla L, Hester L, O'Neill T, Manka C, Benjamin I, Nagarsekar A, Singh I, Hasday JD. Febrile-range hyperthermia augments neutrophil accumulation and enhances lung injury in experimental gram-negative bacterial pneumonia. J Immunol. 2005 Mar 15;174(6):3676-85. doi: 10.4049/jimmunol.174.6.3676.
Shah NG, Tulapurkar ME, Damarla M, Singh IS, Goldblum SE, Shapiro P, Hasday JD. Febrile-range hyperthermia augments reversible TNF-alpha-induced hyperpermeability in human microvascular lung endothelial cells. Int J Hyperthermia. 2012;28(7):627-35. doi: 10.3109/02656736.2012.690547. Epub 2012 Jul 26.
Tulapurkar ME, Almutairy EA, Shah NG, He JR, Puche AC, Shapiro P, Singh IS, Hasday JD. Febrile-range hyperthermia modifies endothelial and neutrophilic functions to promote extravasation. Am J Respir Cell Mol Biol. 2012 Jun;46(6):807-14. doi: 10.1165/rcmb.2011-0378OC. Epub 2012 Jan 26.
Ball MK, Hillman NH, Kallapur SG, Polglase GR, Jobe AH, Pillow JJ. Body temperature effects on lung injury in ventilated preterm lambs. Resuscitation. 2010 Jun;81(6):749-54. doi: 10.1016/j.resuscitation.2009.12.007. Epub 2010 Mar 17.
Beurskens CJ, Aslami H, Kuipers MT, Horn J, Vroom MB, van Kuilenburg AB, Roelofs JJ, Schultz MJ, Juffermans NP. Induced hypothermia is protective in a rat model of pneumococcal pneumonia associated with increased adenosine triphosphate availability and turnover*. Crit Care Med. 2012 Mar;40(3):919-26. doi: 10.1097/CCM.0b013e3182373174.
Chang H, Huang KL, Li MH, Hsu CW, Tsai SH, Chu SJ. Manipulations of core temperatures in ischemia-reperfusion lung injury in rabbits. Pulm Pharmacol Ther. 2008;21(2):285-91. doi: 10.1016/j.pupt.2007.06.001. Epub 2007 Jun 14.
Chin JY, Koh Y, Kim MJ, Kim HS, Kim WS, Kim DS, Kim WD, Lim CM. The effects of hypothermia on endotoxin-primed lung. Anesth Analg. 2007 May;104(5):1171-8, tables of contents. doi: 10.1213/01.ane.0000260316.95836.1c.
Cruces P, Erranz B, Donoso A, Carvajal C, Salomon T, Torres MF, Diaz F. Mild hypothermia increases pulmonary anti-inflammatory response during protective mechanical ventilation in a piglet model of acute lung injury. Paediatr Anaesth. 2013 Nov;23(11):1069-77. doi: 10.1111/pan.12209. Epub 2013 Jun 3.
Huang PS, Tang GJ, Chen CH, Kou YR. Whole-body moderate hypothermia confers protection from wood smoke-induced acute lung injury in rats: the therapeutic window. Crit Care Med. 2006 Apr;34(4):1160-7. doi: 10.1097/01.CCM.0000207342.50559.0F.
Jo YH, Kim K, Rhee JE, Suh GJ, Kwon WY, Na SH, Alam HB. Therapeutic hypothermia attenuates acute lung injury in paraquat intoxication in rats. Resuscitation. 2011 Apr;82(4):487-91. doi: 10.1016/j.resuscitation.2010.11.028. Epub 2011 Jan 14.
Kim K, Kim W, Rhee JE, Jo YH, Lee JH, Kim KS, Kwon WY, Suh GJ, Lee CC, Singer AJ. Induced hypothermia attenuates the acute lung injury in hemorrhagic shock. J Trauma. 2010 Feb;68(2):373-81. doi: 10.1097/TA.0b013e3181a73eea.
Kira S, Daa T, Kashima K, Mori M, Noguchi T, Yokoyama S. Mild hypothermia reduces expression of intercellular adhesion molecule-1 (ICAM-1) and the accumulation of neutrophils after acid-induced lung injury in the rat. Acta Anaesthesiol Scand. 2005 Mar;49(3):351-9. doi: 10.1111/j.1399-6576.2005.00593.x.
Lim CM, Hong SB, Koh Y, Lee SD, Kim WS, Kim DS, Kim WD. Hypothermia attenuates vascular manifestations of ventilator-induced lung injury in rats. Lung. 2003;181(1):23-34. doi: 10.1007/s00408-002-0111-x.
Lim CM, Kim MS, Ahn JJ, Kim MJ, Kwon Y, Lee I, Koh Y, Kim DS, Kim WD. Hypothermia protects against endotoxin-induced acute lung injury in rats. Intensive Care Med. 2003 Mar;29(3):453-9. doi: 10.1007/s00134-002-1529-6. Epub 2002 Nov 22.
Peng CK, Huang KL, Wu CP, Li MH, Lin HI, Hsu CW, Tsai SH, Chu SJ. The role of mild hypothermia in air embolism-induced acute lung injury. Anesth Analg. 2010 May 1;110(5):1336-42. doi: 10.1213/ANE.0b013e3181d27e90.
Tang ZH, Hu JT, Lu ZC, Ji XF, Chen XF, Jiang LY, Zhang C, Jiang JS, Pang YP, Li CQ. Effect of mild hypothermia on the expression of toll-like receptor 2 in lung tissues with experimental acute lung injury. Heart Lung Circ. 2014 Dec;23(12):1202-7. doi: 10.1016/j.hlc.2014.05.016. Epub 2014 Jun 24.
Villar J, Slutsky AS. Effects of induced hypothermia in patients with septic adult respiratory distress syndrome. Resuscitation. 1993 Oct;26(2):183-92. doi: 10.1016/0300-9572(93)90178-s.
Karnatovskaia LV, Festic E, Freeman WD, Lee AS. Effect of therapeutic hypothermia on gas exchange and respiratory mechanics: a retrospective cohort study. Ther Hypothermia Temp Manag. 2014 Jun;4(2):88-95. doi: 10.1089/ther.2014.0004. Epub 2014 May 19.
Manthous CA, Hall JB, Olson D, Singh M, Chatila W, Pohlman A, Kushner R, Schmidt GA, Wood LD. Effect of cooling on oxygen consumption in febrile critically ill patients. Am J Respir Crit Care Med. 1995 Jan;151(1):10-4. doi: 10.1164/ajrccm.151.1.7812538.
Gattinoni L, Tonetti T, Cressoni M, Cadringher P, Herrmann P, Moerer O, Protti A, Gotti M, Chiurazzi C, Carlesso E, Chiumello D, Quintel M. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016 Oct;42(10):1567-1575. doi: 10.1007/s00134-016-4505-2. Epub 2016 Sep 12.
Nagarsekar A, Tulapurkar ME, Singh IS, Atamas SP, Shah NG, Hasday JD. Hyperthermia promotes and prevents respiratory epithelial apoptosis through distinct mechanisms. Am J Respir Cell Mol Biol. 2012 Dec;47(6):824-33. doi: 10.1165/rcmb.2012-0105OC. Epub 2012 Sep 6.
Potla R, Singh IS, Atamas SP, Hasday JD. Shifts in temperature within the physiologic range modify strand-specific expression of select human microRNAs. RNA. 2015 Jul;21(7):1261-73. doi: 10.1261/rna.049122.114. Epub 2015 May 27.
Shah NG, Cowan MJ, Pickering E, Sareh H, Afshar M, Fox D, Marron J, Davis J, Herold K, Shanholtz CB, Hasday JD. Nonpharmacologic approach to minimizing shivering during surface cooling: a proof of principle study. J Crit Care. 2012 Dec;27(6):746.e1-8. doi: 10.1016/j.jcrc.2012.04.016. Epub 2012 Jul 2.
Beitler JR, Sands SA, Loring SH, Owens RL, Malhotra A, Spragg RG, Matthay MA, Thompson BT, Talmor D. Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive Care Med. 2016 Sep;42(9):1427-36. doi: 10.1007/s00134-016-4423-3. Epub 2016 Jun 24.
Guerin C, Mancebo J. Prone positioning and neuromuscular blocking agents are part of standard care in severe ARDS patients: yes. Intensive Care Med. 2015 Dec;41(12):2195-7. doi: 10.1007/s00134-015-3918-7. Epub 2015 Sep 23. No abstract available.
Slack DF, Corwin DS, Shah NG, Shanholtz CB, Verceles AC, Netzer G, Jones KM, Brown CH, Terrin ML, Hasday JD. Pilot Feasibility Study of Therapeutic Hypothermia for Moderate to Severe Acute Respiratory Distress Syndrome. Crit Care Med. 2017 Jul;45(7):1152-1159. doi: 10.1097/CCM.0000000000002338.
Calfee CS, Ware LB, Eisner MD, Parsons PE, Thompson BT, Wickersham N, Matthay MA; NHLBI ARDS Network. Plasma receptor for advanced glycation end products and clinical outcomes in acute lung injury. Thorax. 2008 Dec;63(12):1083-9. doi: 10.1136/thx.2008.095588. Epub 2008 Jun 19.
Greene KE, Wright JR, Steinberg KP, Ruzinski JT, Caldwell E, Wong WB, Hull W, Whitsett JA, Akino T, Kuroki Y, Nagae H, Hudson LD, Martin TR. Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS. Am J Respir Crit Care Med. 1999 Dec;160(6):1843-50. doi: 10.1164/ajrccm.160.6.9901117.
Calfee CS, Eisner MD, Parsons PE, Thompson BT, Conner ER Jr, Matthay MA, Ware LB; NHLBI Acute Respiratory Distress Syndrome Clinical Trials Network. Soluble intercellular adhesion molecule-1 and clinical outcomes in patients with acute lung injury. Intensive Care Med. 2009 Feb;35(2):248-57. doi: 10.1007/s00134-008-1235-0. Epub 2008 Aug 1.
Kimura D, Saravia J, Rovnaghi CR, Meduri GU, Schwingshackl A, Cormier SA, Anand KJ. Plasma Biomarker Analysis in Pediatric ARDS: Generating Future Framework from a Pilot Randomized Control Trial of Methylprednisolone: A Framework for Identifying Plasma Biomarkers Related to Clinical Outcomes in Pediatric ARDS. Front Pediatr. 2016 Mar 31;4:31. doi: 10.3389/fped.2016.00031. eCollection 2016.
Ferguson ND, Fan E, Camporota L, Antonelli M, Anzueto A, Beale R, Brochard L, Brower R, Esteban A, Gattinoni L, Rhodes A, Slutsky AS, Vincent JL, Rubenfeld GD, Thompson BT, Ranieri VM. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med. 2012 Oct;38(10):1573-82. doi: 10.1007/s00134-012-2682-1. Epub 2012 Aug 25.
Brown SM, Grissom CK, Moss M, Rice TW, Schoenfeld D, Hou PC, Thompson BT, Brower RG; NIH/NHLBI PETAL Network Collaborators. Nonlinear Imputation of Pao2/Fio2 From Spo2/Fio2 Among Patients With Acute Respiratory Distress Syndrome. Chest. 2016 Aug;150(2):307-13. doi: 10.1016/j.chest.2016.01.003. Epub 2016 Jan 19.
Provided Documents
Download supplemental materials such as informed consent forms, study protocols, or participant manuals.
Document Type: Study Protocol
Document Type: Statistical Analysis Plan
Document Type: Informed Consent Form
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
HP-00078506
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.