Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
12 participants
OBSERVATIONAL
2017-08-28
2018-07-01
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Diet Induced Ketosis for Brain Injury - A Feasibility Study
NCT04308577
Cerebral Autoregulation in Patients With Aneurysmal SubArachnoid Haemorrhage
NCT03987139
Cerebral Blood Flow and Metabolism During Hypoxia and Endotoxemia
NCT00332267
Multimodal Neuromonitoring in Acute Brain Injury
NCT06302244
Improving Outcomes for Patients With Life-Threatening Neurologic Illness
NCT04189471
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
To describe the incidence of cerebral mitochondrial dysfunction in comatose patients admitted to the Neurointensive Care Unit (NICU) at Odense University Hospital and to evaluate the possible correlations between cerebral and jugular bulb microdialysis in an effort to develop new, effective and less invasive diagnostical tools for relevant patient groups.
Background
The hallmark of several serious neurological and neurosurgical disorders including severe traumatic brain injury, intracranial haemorrhage, cerebral infection and global hypoxic injury after cardiac arrest, is that the primary insult is out of reach for therapeutic intervention. Secondary injuries however, ensuing in the days to weeks after the primary insult are amenable to prevention or treatment. Inflammation, transient ischemia, free radical formation, cellular Ca2+-influx and mitochondrial dysfunction are therefore all examples of current research topics in neurointensive care.
The research group has a long history of experimental and clinical work in the area of cerebral metabolism in neurocritical disease. In recent years neuromonitoring with cerebral microdialysis has been a main focus, as well as mitochondrial dysfunction as a possible therapeutic target . In 2004 the investigators showed how monitoring SAH-patients with cerebral microdialysis could predict delayed neurological deterioration/vasospasm related complications, results that were corroborated by later external studies. In 2012 and 2014, results have been published showing how to diagnose mitochondrial dysfunction on the basis of the biochemical patterns of cerebral microdialysis experimentally as well as clinically. Briefly, a cerebrochemical pattern with elevated lactate/pyruvate-ratio with simultaneous normal or supranormal levels of pyruvate and glucose seen together with normal tissue oxygen monitoring indicates mitochondrial dysfunction. Mitochondrial dysfunction most likely plays a key role in the worsening of outcome in a variety cerebral pathological conditions, and might be amenable to pharmacologic intervention.
The microdialysis technique is based on a thin probe with a semipermeable membrane being inserted in affected brain tissue, collecting interstitial fluid from a small area surrounding the probe. The fluid is analysed for metabolites, proteins or pharmacological substances and has earlier been shown to be of great value in guiding NICU care and prognostication. One problem with the technique is, however, that the measurements are regional and limited to the very small sampling volume of the probe. Another obstacle is that the technique is intracranial invasive.
Aims
In the current prospective cohort study, the investigators will describe the incidence of mitochondrial dysfunction in a patients admitted to the NICU with severe subarachnoid haemorrhage (SAH). As patients suffering from SAH often have a non-ischemic cerebral metabolic affliction, a global cerebral measurement would presumably be as useful or more so than a focal measurement from only a very small regional brain volume. The investigators wish to evaluate a new method of monitoring, namely microdialysis of cerebral venous blood drainage. The cerebral venous drainage passes almost without exception through the jugular bulbs, left or right sided majority depending on dominance. The investigators will compare results of regional cerebral and venous measurements in order to confirm the hypothesis that metabolic disturbances of the brain are mirrored in the venous blood drainage in the jugular bulb. A pilot study of patients undergoing open heart surgery has confirmed significant differences in lactate and pyruvate in arterial systemic vs jugular venous blood. Yet unpublished data from this groups porcine experimental model supports the possibility of global metabolic venous monitoring.
Perspectives
If jugular bulb microdialysis can be confirmed to give a reliable global estimate of cerebral metabolic state it might be possible to a implement a new, less invasive diagnostic tool for NICU-patients. Surrogate measures in use today as e.g. NIRS (Near Infrared Spectroscopy) correlate poorly to cerebral metabolic status.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
COHORT
PROSPECTIVE
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Suspicion of intracranial pathology
Exclusion Criteria
* Consent from closest of kin not given
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Region of Southern Denmark
OTHER
Odense University Hospital
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Axel Forsse
MD, PhD-fellow
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Frantz Rom Poulsen, MD, PhD
Role: STUDY_CHAIR
Consultant, Professor, Research leader
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Odense University Hospital
Odense, , Denmark
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Nordstrom CH, Koskinen LO, Olivecrona M. Aspects on the Physiological and Biochemical Foundations of Neurocritical Care. Front Neurol. 2017 Jun 19;8:274. doi: 10.3389/fneur.2017.00274. eCollection 2017.
Nordstrom CH, Rehncrona S, Siesjo BK. Restitution of cerebral energy state, as well as of glycolytic metabolites, citric acid cycle intermediates and associated amino acids after 30 minutes of complete ischemia in rats anaesthetized with nitrous oxide or phenobarbital. J Neurochem. 1978 Feb;30(2):479-86. doi: 10.1111/j.1471-4159.1978.tb06553.x. No abstract available.
Jacobsen A, Nielsen TH, Nilsson O, Schalen W, Nordstrom CH. Bedside diagnosis of mitochondrial dysfunction in aneurysmal subarachnoid hemorrhage. Acta Neurol Scand. 2014 Sep;130(3):156-63. doi: 10.1111/ane.12258. Epub 2014 May 3.
Nielsen TH, Olsen NV, Toft P, Nordstrom CH. Cerebral energy metabolism during mitochondrial dysfunction induced by cyanide in piglets. Acta Anaesthesiol Scand. 2013 Jul;57(6):793-801. doi: 10.1111/aas.12092. Epub 2013 Mar 18.
Nielsen TH, Bindslev TT, Pedersen SM, Toft P, Olsen NV, Nordstrom CH. Cerebral energy metabolism during induced mitochondrial dysfunction. Acta Anaesthesiol Scand. 2013 Feb;57(2):229-35. doi: 10.1111/j.1399-6576.2012.02783.x. Epub 2012 Sep 28.
Poulsen FR, Schulz M, Jacobsen A, Andersen AB, Larsen L, Schalen W, Nielsen TH, Nordstrom CH. Bedside evaluation of cerebral energy metabolism in severe community-acquired bacterial meningitis. Neurocrit Care. 2015 Apr;22(2):221-8. doi: 10.1007/s12028-014-0057-x.
Skjoth-Rasmussen J, Schulz M, Kristensen SR, Bjerre P. Delayed neurological deficits detected by an ischemic pattern in the extracellular cerebral metabolites in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2004 Jan;100(1):8-15. doi: 10.3171/jns.2004.100.1.0008.
Rostami E, Engquist H, Howells T, Johnson U, Ronne-Engstrom E, Nilsson P, Hillered L, Lewen A, Enblad P. Early low cerebral blood flow and high cerebral lactate: prediction of delayed cerebral ischemia in subarachnoid hemorrhage. J Neurosurg. 2018 Jun;128(6):1762-1770. doi: 10.3171/2016.11.JNS161140. Epub 2017 Jun 2.
Hutchinson PJ, Jalloh I, Helmy A, Carpenter KL, Rostami E, Bellander BM, Boutelle MG, Chen JW, Claassen J, Dahyot-Fizelier C, Enblad P, Gallagher CN, Helbok R, Hillered L, Le Roux PD, Magnoni S, Mangat HS, Menon DK, Nordstrom CH, O'Phelan KH, Oddo M, Perez Barcena J, Robertson C, Ronne-Engstrom E, Sahuquillo J, Smith M, Stocchetti N, Belli A, Carpenter TA, Coles JP, Czosnyka M, Dizdar N, Goodman JC, Gupta AK, Nielsen TH, Marklund N, Montcriol A, O'Connell MT, Poca MA, Sarrafzadeh A, Shannon RJ, Skjoth-Rasmussen J, Smielewski P, Stover JF, Timofeev I, Vespa P, Zavala E, Ungerstedt U. Consensus statement from the 2014 International Microdialysis Forum. Intensive Care Med. 2015 Sep;41(9):1517-28. doi: 10.1007/s00134-015-3930-y.
Tachtsidis I, Tisdall MM, Pritchard C, Leung TS, Ghosh A, Elwell CE, Smith M. Analysis of the changes in the oxidation of brain tissue cytochrome-c-oxidase in traumatic brain injury patients during hypercapnoea: a broadband NIRS study. Adv Exp Med Biol. 2011;701:9-14. doi: 10.1007/978-1-4419-7756-4_2.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
20150173
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.