Remote Ischemic Preconditioning on Pulmonary Injury in Cardic Surgery
NCT ID: NCT03016182
Last Updated: 2017-02-23
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
UNKNOWN
NA
60 participants
INTERVENTIONAL
2017-02-07
2018-02-28
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
The study hypothesis is: remote ischemic preconditioning will provide lung-protective effect and improve clinical outcomes in patients undergoing cardic surgery.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Protective Effect of RIPC Against Negative Inflammatory Response and Organ Dysfunction After Cardiovascular Surgery (Panda VII)
NCT06707350
Effect of Combined Remote Ischemic Preconditioning and Postconditioning on Acute Pulmonary Injury in Patients Undergoing Valvular Heart Surgery
NCT01427621
Effects of Remote Ischemic Preconditioning and Postconditioning on Lung Injury During Cardiopulmonary Bypass
NCT01144585
The Effect of Remote Ischemic Preconditioning on Myocardial Injury After Noncardiac Surgery
NCT05733208
Remote Ischaemic Preconditioning in Children Undergoing Cardiac Surgery
NCT01680601
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
PARALLEL
PREVENTION
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Remote Ischemic Preconditioning(RIPC)
3 cycles of 5-min upper limb ischemia and 5-min reperfusion using a blood-pressure cuff inflated to a pressure 200mmHg will be given to RIPC
Remote Ischemic Preconditioning
RIPC will be induced during anesthesia by 3 cycles of 5-min upper limb ischemia and 5-min reperfusion using a blood-pressure cuff inflated to a pressure 200mmHg
Control
Control group without remote ischemic preconditioning
Control
Control group witnout remote ischemic preconditioning
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Remote Ischemic Preconditioning
RIPC will be induced during anesthesia by 3 cycles of 5-min upper limb ischemia and 5-min reperfusion using a blood-pressure cuff inflated to a pressure 200mmHg
Control
Control group witnout remote ischemic preconditioning
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
2. Patients aged 18 years to 80 years
Exclusion Criteria
2. Preoperative severe impairment of respiratory function (arterial oxygen tension (PaO2) \<60 mmHg or FEV1\<50% predicted)
3. Prior receipt of chemotherapy or radiation therapy or immunotherapy
4. left ventricular ejection fraction less than 30%
5. preoperative use of inotropics or mechanical assist device
6. Patients with significant hepatic dysfunction (Prothrombin\>2.0 ratio)
7. Patients with known renal failure with a GFR\<30 mL/min/1.73 m2
8. recent myocardial infarction (within 7 days)
9. Systemic or local active infections (either clinically defined or suggested by evidence such as elevated C-reactive protein levels, leukocytosis, or a body temperature\>38℃)
10. Significant peripheral arterial disease affecting the upper limbs
11. surgeries: cardiac transplantation, concomitant carotid endarterectomy , previous heart surgery,, off-pump surgery, emergency surgery
18 Years
80 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Xuzhou Medical University
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Su Liu
Principal Investigator
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Liu Su, M.D/Ph.D
Role: PRINCIPAL_INVESTIGATOR
The Affiliated Hospital of Xuzhou Medical University
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
The Affiliated Hospital of Xuzhou Medical University
Xuzhou, Jiangsu, China
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
References
Explore related publications, articles, or registry entries linked to this study.
Domanski MJ, Mahaffey K, Hasselblad V, Brener SJ, Smith PK, Hillis G, Engoren M, Alexander JH, Levy JH, Chaitman BR, Broderick S, Mack MJ, Pieper KS, Farkouh ME. Association of myocardial enzyme elevation and survival following coronary artery bypass graft surgery. JAMA. 2011 Feb 9;305(6):585-91. doi: 10.1001/jama.2011.99.
JENNINGS RB, SOMMERS HM, SMYTH GA, FLACK HA, LINN H. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol. 1960 Jul;70:68-78. No abstract available.
Braunwald E, Kloner RA. Myocardial reperfusion: a double-edged sword? J Clin Invest. 1985 Nov;76(5):1713-9. doi: 10.1172/JCI112160. No abstract available.
Sullivan PJ, Sweeney KJ, Hirpara KM, Malone CB, Curtin W, Kerin MJ. Cyclical ischaemic preconditioning modulates the adaptive immune response in human limb ischaemia-reperfusion injury. Br J Surg. 2009 Apr;96(4):381-90. doi: 10.1002/bjs.6554.
Bolli R. The late phase of preconditioning. Circ Res. 2000 Nov 24;87(11):972-83. doi: 10.1161/01.res.87.11.972.
Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986 Nov;74(5):1124-36. doi: 10.1161/01.cir.74.5.1124.
Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P. Regional ischemic 'preconditioning' protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation. 1993 Mar;87(3):893-9. doi: 10.1161/01.cir.87.3.893.
Gho BC, Schoemaker RG, van den Doel MA, Duncker DJ, Verdouw PD. Myocardial protection by brief ischemia in noncardiac tissue. Circulation. 1996 Nov 1;94(9):2193-200. doi: 10.1161/01.cir.94.9.2193.
Oxman T, Arad M, Klein R, Avazov N, Rabinowitz B. Limb ischemia preconditions the heart against reperfusion tachyarrhythmia. Am J Physiol. 1997 Oct;273(4):H1707-12. doi: 10.1152/ajpheart.1997.273.4.H1707.
Li G, Labruto F, Sirsjo A, Chen F, Vaage J, Valen G. Myocardial protection by remote preconditioning: the role of nuclear factor kappa-B p105 and inducible nitric oxide synthase. Eur J Cardiothorac Surg. 2004 Nov;26(5):968-73. doi: 10.1016/j.ejcts.2004.06.015.
Kharbanda RK, Mortensen UM, White PA, Kristiansen SB, Schmidt MR, Hoschtitzky JA, Vogel M, Sorensen K, Redington AN, MacAllister R. Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation. 2002 Dec 3;106(23):2881-3. doi: 10.1161/01.cir.0000043806.51912.9b.
Hausenloy DJ, Yellon DM. Remote ischaemic preconditioning: underlying mechanisms and clinical application. Cardiovasc Res. 2008 Aug 1;79(3):377-86. doi: 10.1093/cvr/cvn114. Epub 2008 May 2.
Sivaraman V, Pickard JM, Hausenloy DJ. Remote ischaemic conditioning: cardiac protection from afar. Anaesthesia. 2015 Jun;70(6):732-48. doi: 10.1111/anae.12973. Epub 2015 Feb 26.
Heusch G, Botker HE, Przyklenk K, Redington A, Yellon D. Remote ischemic conditioning. J Am Coll Cardiol. 2015 Jan 20;65(2):177-95. doi: 10.1016/j.jacc.2014.10.031.
Kerendi F, Kin H, Halkos ME, Jiang R, Zatta AJ, Zhao ZQ, Guyton RA, Vinten-Johansen J. Remote postconditioning. Brief renal ischemia and reperfusion applied before coronary artery reperfusion reduces myocardial infarct size via endogenous activation of adenosine receptors. Basic Res Cardiol. 2005 Sep;100(5):404-12. doi: 10.1007/s00395-005-0539-2. Epub 2005 Jun 17.
Hausenloy DJ, Mwamure PK, Venugopal V, Harris J, Barnard M, Grundy E, Ashley E, Vichare S, Di Salvo C, Kolvekar S, Hayward M, Keogh B, MacAllister RJ, Yellon DM. Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet. 2007 Aug 18;370(9587):575-9. doi: 10.1016/S0140-6736(07)61296-3.
Hammermeister KE, Burchfiel C, Johnson R, Grover FL. Identification of patients at greatest risk for developing major complications at cardiac surgery. Circulation. 1990 Nov;82(5 Suppl):IV380-9.
Messent M, Sullivan K, Keogh BF, Morgan CJ, Evans TW. Adult respiratory distress syndrome following cardiopulmonary bypass: incidence and prediction. Anaesthesia. 1992 Mar;47(3):267-8. doi: 10.1111/j.1365-2044.1992.tb02134.x.
Wan S, LeClerc JL, Vincent JL. Inflammatory response to cardiopulmonary bypass: mechanisms involved and possible therapeutic strategies. Chest. 1997 Sep;112(3):676-92. doi: 10.1378/chest.112.3.676.
Kharbanda RK, Li J, Konstantinov IE, Cheung MM, White PA, Frndova H, Stokoe J, Cox P, Vogel M, Van Arsdell G, MacAllister R, Redington AN. Remote ischaemic preconditioning protects against cardiopulmonary bypass-induced tissue injury: a preclinical study. Heart. 2006 Oct;92(10):1506-11. doi: 10.1136/hrt.2004.042366. Epub 2006 Jul 3.
Xia Z, Herijgers P, Nishida T, Ozaki S, Wouters P, Flameng W. Remote preconditioning lessens the deterioration of pulmonary function after repeated coronary artery occlusion and reperfusion in sheep. Can J Anaesth. 2003 May;50(5):481-8. doi: 10.1007/BF03021061. English, French.
Cheung MM, Kharbanda RK, Konstantinov IE, Shimizu M, Frndova H, Li J, Holtby HM, Cox PN, Smallhorn JF, Van Arsdell GS, Redington AN. Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans. J Am Coll Cardiol. 2006 Jun 6;47(11):2277-82. doi: 10.1016/j.jacc.2006.01.066. Epub 2006 May 15.
Zhou W, Zeng D, Chen R, Liu J, Yang G, Liu P, Zhou X. Limb ischemic preconditioning reduces heart and lung injury after an open heart operation in infants. Pediatr Cardiol. 2010 Jan;31(1):22-9. doi: 10.1007/s00246-009-9536-9. Epub 2009 Sep 29.
Kim JC, Shim JK, Lee S, Yoo YC, Yang SY, Kwak YL. Effect of combined remote ischemic preconditioning and postconditioning on pulmonary function in valvular heart surgery. Chest. 2012 Aug;142(2):467-475. doi: 10.1378/chest.11-2246.
Li L, Luo W, Huang L, Zhang W, Gao Y, Jiang H, Zhang C, Long L, Chen S. Remote perconditioning reduces myocardial injury in adult valve replacement: a randomized controlled trial. J Surg Res. 2010 Nov;164(1):e21-6. doi: 10.1016/j.jss.2010.06.016. Epub 2010 Jul 2.
Rahman IA, Mascaro JG, Steeds RP, Frenneaux MP, Nightingale P, Gosling P, Townsend P, Townend JN, Green D, Bonser RS. Remote ischemic preconditioning in human coronary artery bypass surgery: from promise to disappointment? Circulation. 2010 Sep 14;122(11 Suppl):S53-9. doi: 10.1161/CIRCULATIONAHA.109.926667.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
XYFY-2017-004
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.