Development of a Cortical Visual Neuroprosthesis for the Blind
NCT ID: NCT02983370
Last Updated: 2024-05-08
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
RECRUITING
NA
5 participants
INTERVENTIONAL
2019-10-01
2025-12-31
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
A Study to Evaluate the BrainPort® Vision Device in Subjects Who Are Blind
NCT01488786
An Exploratory Study of Visual Function Rehabilitation in Patients With Ocular Trauma
NCT06174415
Optical Head-Mounted Display Technology for Low Vision Rehabilitation
NCT02983305
Identifying Progression of Retinal Disease in Eyes With NPDR in Diabetes Type 2 Using Non-invasive Procedures
NCT01145599
Safety & Efficacy of Subretinal Implants for Partial Restoration of Vision in Blind Patients
NCT01497379
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
Several research groups worldwide are engaged in attempts to restore vision through retinal prosthesis. However these devices are not viable for all causes of blindness. Thus, if the communication link between eye and brain is destroyed (e.g. for Glaucoma or optic nerve atrophy), as is the case for 148 million people worldwide, then visual cortical prosthesis holds the dominant hope for visual restoration. Consequently, there are many compelling reasons to pursue the development of a cortical prosthesis capable of restoring some useful vision in profoundly blind patients and this approach may be the only treatment available for end-stage retinitis pigmentosa patients and for pathologies such as glaucoma optic atrophy, trauma to the retina and/or optic nerves, and for diseases of the central visual pathways due to brain injuries or stroke.
The investigators will implant the CORTIVIS vision neuroprosthetic system, which utilizes a FDA cleared microelectrode array, into blind human volunteers and obtain descriptive feedback about visualized percepts. The experiments are designed to learn if volunteers can learn to integrate the electrical stimulation of brain visual areas into meaningful percepts. It is expected that a cortical device can create truly meaningful visual percepts that can be translated into functional gains such as the recognition, localization and grasping of objects or skillful navigation in familiar an unfamiliar environments resulting in a substantial improvement in the standard of living of blind and visually impaired persons.
All the experiments will be carried out at the patient's hospital room (Hospital IMED Elche) during the post-surgical period or in a human psychophysical laboratory (University Miguel Hernández).
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
OTHER
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Blind volunteer
Blind volunteers will be implanted with our existing vision neuroprosthetic system, which utilizes a FDA cleared microelectrode array, using a minicraniotomy. The array will be implanted near the occipital pole or in extra striate areas. The investigators will collect descriptive feedback regarding thresholds, evoked perceptions and stimulation parameters leading to recognizable patterns.
Minicraniotomy
The surgical method for the implantation of the intracortical microelectrodes is straightforward and follows the standard neurosurgical procedures. Briefly, after the scalp is prepped with an antiseptic, a small skin incision is made. Then the skin and muscles are lifted off from the bone and folded back. Next, one small burr hole or a minicraniotomy of approximately 1.5 cm is made in the skull. This is a minimally invasive procedure that allows an easy access to the brain and is a standard procedure widely used in neurosurgery.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Minicraniotomy
The surgical method for the implantation of the intracortical microelectrodes is straightforward and follows the standard neurosurgical procedures. Briefly, after the scalp is prepped with an antiseptic, a small skin incision is made. Then the skin and muscles are lifted off from the bone and folded back. Next, one small burr hole or a minicraniotomy of approximately 1.5 cm is made in the skull. This is a minimally invasive procedure that allows an easy access to the brain and is a standard procedure widely used in neurosurgery.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Severe visual impairment with bilateral visual loss.
* Greater than 18 years of age.
* General health: excellent.
* Following a general physical and neurological examination, patient must have normal serum electrolytes, C-reactive protein, complete blood count and PT and PTT.
* No history of stroke, seizure, coagulopathy, cardiac arrhythmias or ischemia, pulmonary, hepatic or renal disease, nor transmissible viruses such as hepatitis or HIV.
* Stable dose of current regular medication for at least four weeks prior to trial entry.
* Able to perform the study during the full time period of up to 6 months.
Special consideration will be given to patients with (1) detailed medical histories, including documentation of the onset, mechanism and evolution of the blindness; (2) lower risks associated with surgery; and (3) no psychiatric disorders or other mental disabilities.
Exclusion Criteria
* Period of appropriate visual functions \< 12 years /lifetime.
* For medical reasons: Individuals with a history of seizure disorders, coagulopathy, cardiac arrythmias or ischemia, pulmonary, hepatic or renal disease, and any other neurological disorder. Patients who carry a transmissible virus such as hepatitis and individuals with HIV-related neuropathies.
* Vulnerable subject groups (e.g., pregnant women, prisoners, etc.).
* Persons unable to give written informed consent prior to participation in the study.
* Not able to perform the study during the full time period (at least 3 months).
* Any other significant disease or disorder which, in the opinion of the Investigator, may either put the participants at risk because of participation in the trial, or may influence the result of the trial, or the participant's ability to participate in the trial.
18 Years
70 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Hospital IMED Elche
UNKNOWN
Universidad Miguel Hernandez de Elche
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Eduardo Fernandez
MD and PhD
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
Eduardo Fernandez, MD and PhD
Role: PRINCIPAL_INVESTIGATOR
Universidad Miguel Hernandez de Elche
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Hospital IMED Elche
Elche, Alicante, Spain
Universidad Miguel Hernandez de Elche
Elche, Alicante, Spain
Countries
Review the countries where the study has at least one active or historical site.
Central Contacts
Reach out to these primary contacts for questions about participation or study logistics.
Facility Contacts
Find local site contact details for specific facilities participating in the trial.
References
Explore related publications, articles, or registry entries linked to this study.
Martinez-Alvarez A, Crespo-Cano R, Diaz-Tahoces A, Cuenca-Asensi S, Ferrandez Vicente JM, Fernandez E. Automatic Tuning of a Retina Model for a Cortical Visual Neuroprosthesis Using a Multi-Objective Optimization Genetic Algorithm. Int J Neural Syst. 2016 Nov;26(7):1650021. doi: 10.1142/S0129065716500210. Epub 2016 Mar 29.
Alfaro A, Bernabeu A, Agullo C, Parra J, Fernandez E. Hearing colors: an example of brain plasticity. Front Syst Neurosci. 2015 Apr 14;9:56. doi: 10.3389/fnsys.2015.00056. eCollection 2015.
Fernandez E, Greger B, House PA, Aranda I, Botella C, Albisua J, Soto-Sanchez C, Alfaro A, Normann RA. Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects. Front Neuroeng. 2014 Jul 21;7:24. doi: 10.3389/fneng.2014.00024. eCollection 2014.
Normann RA, Greger B, House P, Romero SF, Pelayo F, Fernandez E. Toward the development of a cortically based visual neuroprosthesis. J Neural Eng. 2009 Jun;6(3):035001. doi: 10.1088/1741-2560/6/3/035001. Epub 2009 May 20.
Warren DJ, Fernandez E, Normann RA. High-resolution two-dimensional spatial mapping of cat striate cortex using a 100-microelectrode array. Neuroscience. 2001;105(1):19-31. doi: 10.1016/s0306-4522(01)00174-9.
Maynard EM, Fernandez E, Normann RA. A technique to prevent dural adhesions to chronically implanted microelectrode arrays. J Neurosci Methods. 2000 Apr 15;97(2):93-101. doi: 10.1016/s0165-0270(00)00159-x.
Morillas CA, Romero SF, Martinez A, Pelayo FJ, Ros E, Fernandez E. A design framework to model retinas. Biosystems. 2007 Feb;87(2-3):156-63. doi: 10.1016/j.biosystems.2006.09.009. Epub 2006 Sep 7.
Fernandez E, Pelayo F, Romero S, Bongard M, Marin C, Alfaro A, Merabet L. Development of a cortical visual neuroprosthesis for the blind: the relevance of neuroplasticity. J Neural Eng. 2005 Dec;2(4):R1-12. doi: 10.1088/1741-2560/2/4/R01. Epub 2005 Nov 29.
Marin C, Fernandez E. Biocompatibility of intracortical microelectrodes: current status and future prospects. Front Neuroeng. 2010 May 28;3:8. doi: 10.3389/fneng.2010.00008. eCollection 2010.
Bernabeu A, Alfaro A, Garcia M, Fernandez E. Proton magnetic resonance spectroscopy (1H-MRS) reveals the presence of elevated myo-inositol in the occipital cortex of blind subjects. Neuroimage. 2009 Oct 1;47(4):1172-6. doi: 10.1016/j.neuroimage.2009.04.080. Epub 2009 May 5.
Normann RA, Fernandez E. Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies. J Neural Eng. 2016 Dec;13(6):061003. doi: 10.1088/1741-2560/13/6/061003. Epub 2016 Oct 20.
Fernandez E, Alfaro A, Soto-Sanchez C, Gonzalez-Lopez P, Lozano AM, Pena S, Grima MD, Rodil A, Gomez B, Chen X, Roelfsema PR, Rolston JD, Davis TS, Normann RA. Visual percepts evoked with an intracortical 96-channel microelectrode array inserted in human occipital cortex. J Clin Invest. 2021 Dec 1;131(23):e151331. doi: 10.1172/JCI151331.
Rocca A, Lehner C, Wafula-Wekesa E, Luna E, Fernandez-Cornejo V, Abarca-Olivas J, Soto-Sanchez C, Fernandez-Jover E, Gonzalez-Lopez P. Robot-assisted implantation of a microelectrode array in the occipital lobe as a visual prosthesis: technical note. J Neurosurg. 2023 Oct 27;140(4):1169-1176. doi: 10.3171/2023.8.JNS23772. Print 2024 Apr 1.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
CORTIVIS16-HUM1
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.