Cortical rTMS as a Tool to Change Brain Reactivity to Alcohol Cues
NCT ID: NCT02939313
Last Updated: 2022-01-13
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
EARLY_PHASE1
71 participants
INTERVENTIONAL
2016-01-31
2021-04-12
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Cerebellar Repetitive Transcranial Magnetic Stimulation (rTMS) for the Treatment of Alcohol Use Disorder
NCT03829761
Deep Repetitive Transcranial Magnetic Stimulation for Alcohol Use Disorder
NCT02691390
Efficacity of rTMS in Alcohol Dependance
NCT01569399
Frontal-Striatal Reward Circuit Neuromodulation and Alcohol Self-Administration
NCT04971681
Theta Burst Stimulation as a Tool to Decrease Drinking in Treatment-seeking Alcohol Users
NCT04154111
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
As a recent FDA-approved treatment for depression, there is a growing interest in investigating TMS as a treatment for drug and alcohol use disorders. By changing the frequency and pattern of stimulation, it is possible to induce a long-term potentiation (LTP) or long-term depression (LTD) of activity in the cortical area stimulated as well in its monosynaptic targets. To date, nearly all published reports of brain stimulation as a tool for decreasing craving have focused on applying LTP-like stimulation (typically 10 Hz) to the dlPFC, thereby strengthening executive control circuitry. An alternative approach is to apply LTD-like TMS (such as cTBS) to the mPFC, thereby weakening limbic drive circuitry (which is engaged during craving). A sham TMS-controlled crossover study of 12 heavy alcohol users in our lab indicated that a single dose of mPFC cTBS decreases self-reported craving and the BOLD response to alcohol cues in the mPFC and striatum (limbic regions involved in craving). Using MR spectroscopy, we further demonstrated that cTBS-reduced the glutamine concentration in the mPFC, which may be related to the decrease in BOLD signal and functional connectivity with this region. Before moving forward with large and expensive multisite clinical trials, it is important to determine which cortical target (mPFC vs dlPFC) is likely to have a greater effect on the brain response to alcohol cues (Aim 1), and which will have a greater effect on self-reported craving (Aim 2) -a major factor contributing to relapse and sustained heavy drinking among individuals with AUDs. In this three-visit crossover design, a cohort of non-treatment seeking AUD individuals will receive sham, mPFC, or dlPFC TMS at each visit followed by alcohol-cue induced BOLD imaging and MR Spectroscopy. We will determine whether LTD-like mPFC TMS is more effective than LTP-like dlPFC TMS in:
Aim 1: Reducing alcohol cue-elicited brain activity in limbic circuitry. Participants will be exposed to our well-established fMRI alcohol cue paradigm. We will measure the percent BOLD signal change within a network of limbic regions typically activated by alcohol cues (e.g. mPFC, ACC, striatum) (Schacht et al., 2014), as well as functional connectivity between these regions (using psychophysiologic interactions). We will test the hypotheses that 1) both LTD-like stimulation to the mPFC (via cTBS) and LTP-like stimulation to the dlPFC (via 10Hz TMS) will significantly decrease alcohol cue-induced activation of limbic circuitry compared to sham stimulation and 2) this attenuating effect will be more robust when stimulation is targeted at the mPFC directly with cTBS stimulation (rather than indirectly via 10 Hz dlPFC stimulation).
Aim 2: Reducing self-reported alcohol craving. Using intermittent self-reported assessments of the desire to drink alcohol throughout the experimental sessions (before, during, and at several time points after the TMS treatment), we will test the hypothesis that LTD-like stimulation to the mPFC (via cTBS) will decrease self-reported alcohol craving more than will LTP-like stimulation to the dlPFC (via 10Hz TMS).
Finally, to develop a comprehensive and evidence-based foundation for future clinical trials, we will also explore the effects of these innovative brain stimulation treatment strategies on neurochemistry:
Exploratory Aim 3: Regional neurochemistry. Through MR Spectroscopy, we will test the hypothesis that the effects of TMS on the outcomes of Aim 1 \& 2 are mediated by changes in mPFC excitatory/inhibitory neurochemical balance (i.e., changes in glutamate, glutamine, GABA concentrations).
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
RANDOMIZED
CROSSOVER
TREATMENT
DOUBLE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
medial prefrontal
Individuals will receive medial prefrontal cortex stimulation
medial prefrontal cortex
a form of theta burst stimulation that noninvasively induces a depression in brain reactivity
dorsolateral prefrontal
Individuals will receive dorsolateral prefrontal cortex stimulation
dorsolateral prefrontal cortex
a form of transcranial magnetic stimulation that noninvasively induces an increase in brain reactivity
sham
Individuals will receive sham stimulation to the medial prefrontal and dorsolateral prefrontal cortex
sham
sham stimulation
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
medial prefrontal cortex
a form of theta burst stimulation that noninvasively induces a depression in brain reactivity
dorsolateral prefrontal cortex
a form of transcranial magnetic stimulation that noninvasively induces an increase in brain reactivity
sham
sham stimulation
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
Exclusion Criteria
21 Years
40 Years
ALL
Yes
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
NIH
Medical University of South Carolina
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Principal Investigators
Learn about the lead researchers overseeing the trial and their institutional affiliations.
James Prisciandaro, Ph.D.
Role: PRINCIPAL_INVESTIGATOR
Medical University of South Carolina
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Medical University of South Carolina
Charleston, South Carolina, United States
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Sinha R. New findings on biological factors predicting addiction relapse vulnerability. Curr Psychiatry Rep. 2011 Oct;13(5):398-405. doi: 10.1007/s11920-011-0224-0.
Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry. 2005 Aug;162(8):1403-13. doi: 10.1176/appi.ajp.162.8.1403.
Sinha R, Catapano D, O'Malley S. Stress-induced craving and stress response in cocaine dependent individuals. Psychopharmacology (Berl). 1999 Mar;142(4):343-51. doi: 10.1007/s002130050898.
Lee JL, Milton AL, Everitt BJ. Cue-induced cocaine seeking and relapse are reduced by disruption of drug memory reconsolidation. J Neurosci. 2006 May 31;26(22):5881-7. doi: 10.1523/JNEUROSCI.0323-06.2006.
Volkow ND, Wang GJ, Fowler JS, Tomasi D. Addiction circuitry in the human brain. Annu Rev Pharmacol Toxicol. 2012;52:321-36. doi: 10.1146/annurev-pharmtox-010611-134625. Epub 2011 Sep 27.
Bolla K, Ernst M, Kiehl K, Mouratidis M, Eldreth D, Contoreggi C, Matochik J, Kurian V, Cadet J, Kimes A, Funderburk F, London E. Prefrontal cortical dysfunction in abstinent cocaine abusers. J Neuropsychiatry Clin Neurosci. 2004 Fall;16(4):456-64. doi: 10.1176/jnp.16.4.456.
Bolla KI, Eldreth DA, London ED, Kiehl KA, Mouratidis M, Contoreggi C, Matochik JA, Kurian V, Cadet JL, Kimes AS, Funderburk FR, Ernst M. Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. Neuroimage. 2003 Jul;19(3):1085-94. doi: 10.1016/s1053-8119(03)00113-7.
Hanlon CA, Wesley MJ, Stapleton JR, Laurienti PJ, Porrino LJ. The association between frontal-striatal connectivity and sensorimotor control in cocaine users. Drug Alcohol Depend. 2011 Jun 1;115(3):240-3. doi: 10.1016/j.drugalcdep.2010.11.008. Epub 2010 Dec 28.
Gu H, Salmeron BJ, Ross TJ, Geng X, Zhan W, Stein EA, Yang Y. Mesocorticolimbic circuits are impaired in chronic cocaine users as demonstrated by resting-state functional connectivity. Neuroimage. 2010 Nov 1;53(2):593-601. doi: 10.1016/j.neuroimage.2010.06.066. Epub 2010 Jul 11.
Bear MF, Malenka RC. Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol. 1994 Jun;4(3):389-99. doi: 10.1016/0959-4388(94)90101-5.
Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron. 2004 Sep 30;44(1):5-21. doi: 10.1016/j.neuron.2004.09.012.
Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005 Jan 20;45(2):201-6. doi: 10.1016/j.neuron.2004.12.033.
Di Lazzaro V, Pilato F, Saturno E, Oliviero A, Dileone M, Mazzone P, Insola A, Tonali PA, Ranieri F, Huang YZ, Rothwell JC. Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex. J Physiol. 2005 Jun 15;565(Pt 3):945-50. doi: 10.1113/jphysiol.2005.087288. Epub 2005 Apr 21.
Verbruggen F, Aron AR, Stevens MA, Chambers CD. Theta burst stimulation dissociates attention and action updating in human inferior frontal cortex. Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13966-71. doi: 10.1073/pnas.1001957107. Epub 2010 Jul 14.
Cho SS, Ko JH, Pellecchia G, Van Eimeren T, Cilia R, Strafella AP. Continuous theta burst stimulation of right dorsolateral prefrontal cortex induces changes in impulsivity level. Brain Stimul. 2010 Jul;3(3):170-6. doi: 10.1016/j.brs.2009.10.002. Epub 2009 Oct 31.
Jacobson L, Javitt DC, Lavidor M. Activation of inhibition: diminishing impulsive behavior by direct current stimulation over the inferior frontal gyrus. J Cogn Neurosci. 2011 Nov;23(11):3380-7. doi: 10.1162/jocn_a_00020. Epub 2011 Mar 31.
Camprodon JA, Martinez-Raga J, Alonso-Alonso M, Shih MC, Pascual-Leone A. One session of high frequency repetitive transcranial magnetic stimulation (rTMS) to the right prefrontal cortex transiently reduces cocaine craving. Drug Alcohol Depend. 2007 Jan 5;86(1):91-4. doi: 10.1016/j.drugalcdep.2006.06.002. Epub 2006 Sep 12.
Politi E, Fauci E, Santoro A, Smeraldi E. Daily sessions of transcranial magnetic stimulation to the left prefrontal cortex gradually reduce cocaine craving. Am J Addict. 2008 Jul-Aug;17(4):345-6. doi: 10.1080/10550490802139283. No abstract available.
Barr MS, Fitzgerald PB, Farzan F, George TP, Daskalakis ZJ. Transcranial magnetic stimulation to understand the pathophysiology and treatment of substance use disorders. Curr Drug Abuse Rev. 2008 Nov;1(3):328-39. doi: 10.2174/1874473710801030328.
Wing VC, Barr MS, Wass CE, Lipsman N, Lozano AM, Daskalakis ZJ, George TP. Brain stimulation methods to treat tobacco addiction. Brain Stimul. 2013 May;6(3):221-30. doi: 10.1016/j.brs.2012.06.008. Epub 2012 Jul 9.
Hanlon CA, Canterberry M, Taylor JJ, DeVries W, Li X, Brown TR, George MS. Probing the frontostriatal loops involved in executive and limbic processing via interleaved TMS and functional MRI at two prefrontal locations: a pilot study. PLoS One. 2013 Jul 9;8(7):e67917. doi: 10.1371/journal.pone.0067917. Print 2013.
Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J. Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. Eur J Neurosci. 2004 Apr;19(7):1950-62. doi: 10.1111/j.1460-9568.2004.03277.x.
Bohning DE, Shastri A, Lomarev MP, Lorberbaum JP, Nahas Z, George MS. BOLD-fMRI response vs. transcranial magnetic stimulation (TMS) pulse-train length: testing for linearity. J Magn Reson Imaging. 2003 Mar;17(3):279-90. doi: 10.1002/jmri.10271.
Fox MD, Buckner RL, White MP, Greicius MD, Pascual-Leone A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol Psychiatry. 2012 Oct 1;72(7):595-603. doi: 10.1016/j.biopsych.2012.04.028. Epub 2012 Jun 1.
Vernet M, Bashir S, Yoo WK, Oberman L, Mizrahi I, Ifert-Miller F, Beck CJ, Pascual-Leone A. Reproducibility of the effects of theta burst stimulation on motor cortical plasticity in healthy participants. Clin Neurophysiol. 2014 Feb;125(2):320-6. doi: 10.1016/j.clinph.2013.07.004. Epub 2013 Aug 7.
Wilcox CE, Teshiba TM, Merideth F, Ling J, Mayer AR. Enhanced cue reactivity and fronto-striatal functional connectivity in cocaine use disorders. Drug Alcohol Depend. 2011 May 1;115(1-2):137-44. doi: 10.1016/j.drugalcdep.2011.01.009. Epub 2011 Apr 3.
Prisciandaro JJ, McRae-Clark AL, Myrick H, Henderson S, Brady KT. Brain activation to cocaine cues and motivation/treatment status. Addict Biol. 2014 Mar;19(2):240-9. doi: 10.1111/j.1369-1600.2012.00446.x. Epub 2012 Mar 28.
Borckardt JJ, Nahas Z, Koola J, George MS. Estimating resting motor thresholds in transcranial magnetic stimulation research and practice: a computer simulation evaluation of best methods. J ECT. 2006 Sep;22(3):169-75. doi: 10.1097/01.yct.0000235923.52741.72.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
00050256
Identifier Type: -
Identifier Source: org_study_id
NCT02948296
Identifier Type: -
Identifier Source: nct_alias
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.