Validation of an Observational Scale of Dyspnea in Non-communicating Patients in the ICU
NCT ID: NCT02801838
Last Updated: 2017-08-01
Study Results
The study team has not published outcome measurements, participant flow, or safety data for this trial yet. Check back later for updates.
Basic Information
Get a concise snapshot of the trial, including recruitment status, study phase, enrollment targets, and key timeline milestones.
COMPLETED
NA
50 participants
INTERVENTIONAL
2016-02-23
2017-07-28
Brief Summary
Review the sponsor-provided synopsis that highlights what the study is about and why it is being conducted.
Hypothesis : The IC-RDOS is valid for non-communicating ventilated patients and allows a simple and reliable assessment of dyspnea in this specific population.
Objective : To validate the IC-RDOS in non-communicating ICU patients under mechanical ventilation, using comparison with the tools validated for reliable measure of dyspnea in non-communicating patients (EMG, EEG).
Patients and Methods: In 40 patients will be collected simultaneously IC-RDOS, PIP (EEG) and electromyographic activity of three extra diaphragmatic inspiratory muscles (scalene, parasternal and Alae nasi) before and after intervention therapy aiming at reduce dyspnea (ventilator settings or pharmacological intervention), initiated by the clinician in charge of the patient.
Expected results : Observe a strong positive correlation between the IC-RDOS and electrophysiological markers (amplitude of the electromyogram and presence and magnitude of PIP). Observe a correlation between changes in the IC-RDOS and the electrophysiological markers after therapeutic interventions.
Optimizing patient comfort is a prominent concern in the ICU. By optimizing the detection and quantification of dyspnea in non-communicating patients, this study should ultimately improve the management and "the better living" of ventilated patients in intensive care
Related Clinical Trials
Explore similar clinical trials based on study characteristics and research focus.
Prevalence, Determinants and Consequences of Dyspnea During Weaning in Critically Ill Obese Patients
NCT06867354
Respiratory Variability and Dyspnea During Spontaneous Breathing Trial
NCT05762614
Impact of Dyspnea on Patients in the Intensive Care Unit
NCT02336464
Nursing Care for Breathing Discomfort Among Mechanically Ventilated Patients
NCT04019236
Respiratory Drive and Inspiratory Effort in COVID-19 Associated ARDS
NCT06224010
Detailed Description
Dive into the extended narrative that explains the scientific background, objectives, and procedures in greater depth.
It becomes clear that dyspnea is becoming a major matter of concern in ICU mechanically ventilated patients. As this is the case for pain, addressing dyspnea in ICU patients therefore appears highly clinically relevant. This requires focused awareness from caregivers and patient cooperation. Indeed, because dyspnea involves the sensory identification of afferent signals by the brain and their cognitive and affective processing, its characterization depends on self-report. Clinical signs of "respiratory distress" and self-perceived dyspnea can be disconnected, setting a limitation to identifying dyspnea in many ICU patients whose ability to communicate verbally is impaired. Nevertheless, a link does exist between dyspnea and certain observable signs. A respiratory distress observation scale (RDOS) has been validated as a surrogate for self-reported dyspnea in the palliative care setting.
In ICU patients, the research team has recently developed and validated a 5-items intensive care (IC)-RDOS (heart rate, neck muscles use during inspiration, abdominal paradox, fear expression, supplemental oxygen). The findings validate IC-RDOS as potential surrogates of dyspnea in the ICU, proving the concept that observation scales can be useful in this context. Indeed, IC-RDOS had a high sensitivity and specificity to predict a dyspnea-VAS ≥4. However, IC-RDOS is only validated in aware patients and its clinical usefulness in "non communicating" patients still need to be demonstrated.
Addressing dyspnea in "non-communicating" patients is challenging since these patients cannot self-report dyspnea. However, it does not mean at all that they do not experience dyspnea. Indeed, "non-communicating" and "communicating" mechanically ventilated patients are equally submitted to risk factors for dyspnea. Moreover, ignoring dyspnea in a "non-communicating" patient may increase the risk of inadequate ventilator settings, which could in turn even increase dyspnea.
To address this issue, the research team and others have developed and validated reliable electrophysiological makers that help to detect and quantify dyspnea regardless of the patient's self-report ability: 1) the electromyographic (EMG) activity of extra diaphragmatic inspiratory muscles and 2) the premotor inspiratory potentials (PIP) detected on the electroencephalogram (EEG).
1. The EMG activity of three extra diaphragmatic inspiratory muscles (scalene, parasternal intercostal muscles and Alae nasi) is a reliable surrogate of the load capacity balance in healthy subjects and in patients with a respiratory disease. In ICU patients, this EMG activity is significantly correlated with the dyspnea-VAS.
2. The application of an inspiratory resistive load to healthy subjects results in the activation of the pre-motor cortex detected by EEG recording named pre-inspiratory potential (PIP).
OBJECTIVE
The objective of the study is to validate the IC-RDOS as a surrogate of dyspnea in "non-communicating" mechanically ventilated patients in the ICU. To achieve this goal, the IC-RDOS will be compared to two electrophysiological tools that are validated for the assessment of dyspnea in "non-communicating" patients, the EMG of extra diaphragmatic inspiratory muscles and the PIP on the EEG. This comparison will be performed before and after a therapeutic intervention aiming at reduces dyspnea because the concomitant variation of the scale and of the neurophysiological markers is required to validate the reliability of the scale.
The specific aims will be to simultaneously collect the IC-RDOS, PIP and the EMG activity of the Scalene, Parasternal intercostal muscles and Alae nasi,
1. Before any intervention,
2. And after an intervention aiming at reduce dyspnea.
STUDY DESIGN
A first non-verbal measure of respiratory discomfort will be achieved through the IC-RDOS by the experimenter. Concomitantly, EEG and EMG will be recorded over a 15-minutes period.
The therapeutic interventions aiming at reduce dyspnea will be performed by the clinician in charge of the patient, who will be strictly independent of the experimenter. This intervention could be a change in ventilator settings or an administration of a pharmacological agent. The nature of the intervention will be recorded but will remain blinded to the experimenter.
After the therapeutic intervention, a second non-verbal measure of respiratory discomfort will be performed with the IC-RDOS. Concomitantly, EEG and EMG will be recorded over a 15-minutes period.
If the physician in charge of the patients judges it necessary, a second therapeutic intervention may be performed. After this second therapeutic intervention, a third non-verbal measure of respiratory discomfort will be performed with the IC-RDOS. Concomitantly, EEG and EMG will be again recorded over a of 15-minutes period.
EXPECTED RESULTS
Observe a strong positive correlation between non-verbal numerical evaluation of dyspnea by the IC-RDOS and the amplitude of the EMG activity of the three extra diaphragmatic inspiratory muscles.
Observe a significant positive association between the presence and the amplitude of a PIP and the value of the IC-RDOS.
Observe a significant association between the change in the IC-RDOS and the respective changes in the EMG activity of extra diaphragmatic inspiratory muscles and in the amplitude of the PIP.
Observe a decrease in the proportion of dyspneic patients after therapeutic intervention. Observe an average relative reduction of the IC-RDOS after therapeutic intervention.
Conditions
See the medical conditions and disease areas that this research is targeting or investigating.
Study Design
Understand how the trial is structured, including allocation methods, masking strategies, primary purpose, and other design elements.
NA
SINGLE_GROUP
DIAGNOSTIC
NONE
Study Groups
Review each arm or cohort in the study, along with the interventions and objectives associated with them.
Ventilator settings, morphine titration
First, ventilator settings optimization and when the clinician judges necessary (remains discomfortable), opioid titration with a maximum of 10mg of morphine
Morphine
If the physician in charge of the patients judges it necessary, after the optimization of the ventilators settings, if the patient remains uncomfortable, a second therapeutic intervention using a maximum of 10mg morphine titration may be performed. After this second therapeutic intervention, a third non-verbal measure of respiratory discomfort will be performed with the IC-RDOS. Concomitantly, EEG and EMG will be again recorded over a of 15-minutes period.
Interventions
Learn about the drugs, procedures, or behavioral strategies being tested and how they are applied within this trial.
Morphine
If the physician in charge of the patients judges it necessary, after the optimization of the ventilators settings, if the patient remains uncomfortable, a second therapeutic intervention using a maximum of 10mg morphine titration may be performed. After this second therapeutic intervention, a third non-verbal measure of respiratory discomfort will be performed with the IC-RDOS. Concomitantly, EEG and EMG will be again recorded over a of 15-minutes period.
Other Intervention Names
Discover alternative or legacy names that may be used to describe the listed interventions across different sources.
Eligibility Criteria
Check the participation requirements, including inclusion and exclusion rules, age limits, and whether healthy volunteers are accepted.
Inclusion Criteria
* Invasive mechanical ventilation for \> 24 h.
* All cycles triggered by the patient.
* "Non-communicating" patient, defined as a score \< -1 on the Richmond Agitation and Sedation Scale (RASS) \[1\].
* Suspicion by the clinician in charge of the patient of a dyspnea by at least two of the four following elements: tachypnea \> 25 cycles/min ; suprasternal or supraclavicular draw ; abdominal paradox on inspiration ; facial discomfort expression (facial rating scale).
* Decision by the physician in charge of the patient to make an intervention in order to reduce dyspnea. This intervention will consist either in change in ventilator settings or in the administration of pharmacologic agents that reduce dyspnea, such as opioids.
Exclusion Criteria
* Pregnancy.
* Severe acquired or congenital neuropathy or myopathy that could affect the physical or behavioural manifestations of dyspnea and the collection of EMG activity of inspiratory extra diaphragmatic muscles.
* Central neurological disease that may alter the collection of PIP.
18 Years
ALL
No
Sponsors
Meet the organizations funding or collaborating on the study and learn about their roles.
Association pour le Développement et l'Organisation de la Recherche en Pneumologie et sur le Sommeil
OTHER
Responsible Party
Identify the individual or organization who holds primary responsibility for the study information submitted to regulators.
Locations
Explore where the study is taking place and check the recruitment status at each participating site.
Service de Pneumologie et Réanimation Médicale, Groupe Hospitalier Pitié Salpêtrière Paris, France
Paris, , France
Countries
Review the countries where the study has at least one active or historical site.
References
Explore related publications, articles, or registry entries linked to this study.
Lansing RW, Gracely RH, Banzett RB. The multiple dimensions of dyspnea: review and hypotheses. Respir Physiol Neurobiol. 2009 May 30;167(1):53-60. doi: 10.1016/j.resp.2008.07.012. Epub 2008 Jul 25.
Cherniack NS, Altose MD. Mechanisms of dyspnea. Clin Chest Med. 1987 Jun;8(2):207-14.
Morelot-Panzini C, Demoule A, Straus C, Zelter M, Derenne JP, Willer JC, Similowski T. Dyspnea as a noxious sensation: inspiratory threshold loading may trigger diffuse noxious inhibitory controls in humans. J Neurophysiol. 2007 Feb;97(2):1396-404. doi: 10.1152/jn.00116.2006. Epub 2006 Jul 26.
HAMMOND EC. SOME PRELIMINARY FINDINGS ON PHYSICAL COMPLAINTS FROM A PROSPECTIVE STUDY OF 1,064,004 MEN AND WOMEN. Am J Public Health Nations Health. 1964 Jan;54(1):11-23. doi: 10.2105/ajph.54.1.11. No abstract available.
Kessler R, Partridge MR, Miravitlles M, Cazzola M, Vogelmeier C, Leynaud D, Ostinelli J. Symptom variability in patients with severe COPD: a pan-European cross-sectional study. Eur Respir J. 2011 Feb;37(2):264-72. doi: 10.1183/09031936.00051110. Epub 2010 Nov 29.
Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, Fukuchi Y, Jenkins C, Rodriguez-Roisin R, van Weel C, Zielinski J; Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2007 Sep 15;176(6):532-55. doi: 10.1164/rccm.200703-456SO. Epub 2007 May 16.
Nishimura K, Izumi T, Tsukino M, Oga T. Dyspnea is a better predictor of 5-year survival than airway obstruction in patients with COPD. Chest. 2002 May;121(5):1434-40. doi: 10.1378/chest.121.5.1434.
Celli BR, Cote CG, Marin JM, Casanova C, Montes de Oca M, Mendez RA, Pinto Plata V, Cabral HJ. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med. 2004 Mar 4;350(10):1005-12. doi: 10.1056/NEJMoa021322.
Esteban C, Quintana JM, Aburto M, Moraza J, Egurrola M, Perez-Izquierdo J, Aizpiri S, Aguirre U, Capelastegui A. Impact of changes in physical activity on health-related quality of life among patients with COPD. Eur Respir J. 2010 Aug;36(2):292-300. doi: 10.1183/09031936.00021409. Epub 2010 Jan 14.
Schmidt M, Demoule A, Polito A, Porchet R, Aboab J, Siami S, Morelot-Panzini C, Similowski T, Sharshar T. Dyspnea in mechanically ventilated critically ill patients. Crit Care Med. 2011 Sep;39(9):2059-65. doi: 10.1097/CCM.0b013e31821e8779.
Wilson PR. Clinical practice guideline: acute pain management. Clin J Pain. 1992 Sep;8(3):187-8. doi: 10.1097/00002508-199209000-00001. No abstract available.
Pochard F, Lanore JJ, Bellivier F, Ferrand I, Mira JP, Belghith M, Brunet F, Dhainaut JF. Subjective psychological status of severely ill patients discharged from mechanical ventilation. Clin Intensive Care. 1995;6(2):57-61.
de Miranda S, Pochard F, Chaize M, Megarbane B, Cuvelier A, Bele N, Gonzalez-Bermejo J, Aboab J, Lautrette A, Lemiale V, Roche N, Thirion M, Chevret S, Schlemmer B, Similowski T, Azoulay E. Postintensive care unit psychological burden in patients with chronic obstructive pulmonary disease and informal caregivers: A multicenter study. Crit Care Med. 2011 Jan;39(1):112-8. doi: 10.1097/CCM.0b013e3181feb824.
Pennock BE, Crawshaw L, Maher T, Price T, Kaplan PD. Distressful events in the ICU as perceived by patients recovering from coronary artery bypass surgery. Heart Lung. 1994 Jul-Aug;23(4):323-7.
van de Leur JP, van der Schans CP, Loef BG, Deelman BG, Geertzen JH, Zwaveling JH. Discomfort and factual recollection in intensive care unit patients. Crit Care. 2004 Dec;8(6):R467-73. doi: 10.1186/cc2976. Epub 2004 Oct 28.
Rotondi AJ, Chelluri L, Sirio C, Mendelsohn A, Schulz R, Belle S, Im K, Donahoe M, Pinsky MR. Patients' recollections of stressful experiences while receiving prolonged mechanical ventilation in an intensive care unit. Crit Care Med. 2002 Apr;30(4):746-52. doi: 10.1097/00003246-200204000-00004.
Cuthbertson BH, Hull A, Strachan M, Scott J. Post-traumatic stress disorder after critical illness requiring general intensive care. Intensive Care Med. 2004 Mar;30(3):450-5. doi: 10.1007/s00134-003-2004-8. Epub 2003 Sep 5.
Campbell ML, Templin T, Walch J. A Respiratory Distress Observation Scale for patients unable to self-report dyspnea. J Palliat Med. 2010 Mar;13(3):285-90. doi: 10.1089/jpm.2009.0229.
Campbell ML. Respiratory distress: a model of responses and behaviors to an asphyxial threat for patients who are unable to self-report. Heart Lung. 2008 Jan-Feb;37(1):54-60. doi: 10.1016/j.hrtlng.2007.05.007.
Persichini R, Gay F, Schmidt M, Mayaux J, Demoule A, Morelot-Panzini C, Similowski T. Diagnostic Accuracy of Respiratory Distress Observation Scales as Surrogates of Dyspnea Self-report in Intensive Care Unit Patients. Anesthesiology. 2015 Oct;123(4):830-7. doi: 10.1097/ALN.0000000000000805.
Hug F, Raux M, Morelot-Panzini C, Similowski T. Surface EMG to assess and quantify upper airway dilators activity during non-invasive ventilation. Respir Physiol Neurobiol. 2011 Sep 15;178(2):341-5. doi: 10.1016/j.resp.2011.06.007. Epub 2011 Jun 15.
Ward ME, Corbeil C, Gibbons W, Newman S, Macklem PT. Optimization of respiratory muscle relaxation during mechanical ventilation. Anesthesiology. 1988 Jul;69(1):29-35. doi: 10.1097/00000542-198807000-00005.
Parthasarathy S, Jubran A, Laghi F, Tobin MJ. Sternomastoid, rib cage, and expiratory muscle activity during weaning failure. J Appl Physiol (1985). 2007 Jul;103(1):140-7. doi: 10.1152/japplphysiol.00904.2006. Epub 2007 Mar 29.
Schmidt M, Chiti L, Hug F, Demoule A, Similowski T. Surface electromyogram of inspiratory muscles: a possible routine monitoring tool in the intensive care unit. Br J Anaesth. 2011 Jun;106(6):913-4. doi: 10.1093/bja/aer141. No abstract available.
Schmidt M, Kindler F, Gottfried SB, Raux M, Hug F, Similowski T, Demoule A. Dyspnea and surface inspiratory electromyograms in mechanically ventilated patients. Intensive Care Med. 2013 Aug;39(8):1368-76. doi: 10.1007/s00134-013-2910-3. Epub 2013 Apr 11.
Raux M, Straus C, Redolfi S, Morelot-Panzini C, Couturier A, Hug F, Similowski T. Electroencephalographic evidence for pre-motor cortex activation during inspiratory loading in humans. J Physiol. 2007 Jan 15;578(Pt 2):569-78. doi: 10.1113/jphysiol.2006.120246. Epub 2006 Nov 16.
Raux M, Ray P, Prella M, Duguet A, Demoule A, Similowski T. Cerebral cortex activation during experimentally induced ventilator fighting in normal humans receiving noninvasive mechanical ventilation. Anesthesiology. 2007 Nov;107(5):746-55. doi: 10.1097/01.anes.0000287005.58761.e8.
Decavele M, Bureau C, Campion S, Nierat MC, Rivals I, Wattiez N, Faure M, Mayaux J, Morawiec E, Raux M, Similowski T, Demoule A. Interventions Relieving Dyspnea in Intubated Patients Show Responsiveness of the Mechanical Ventilation-Respiratory Distress Observation Scale. Am J Respir Crit Care Med. 2023 Jul 1;208(1):39-48. doi: 10.1164/rccm.202301-0188OC.
Other Identifiers
Review additional registry numbers or institutional identifiers associated with this trial.
ADOREPS_2
Identifier Type: -
Identifier Source: org_study_id
More Related Trials
Additional clinical trials that may be relevant based on similarity analysis.